Dissertation: persistence landscapes
This commit is contained in:
parent
72753b6675
commit
34073a3ef8
2 changed files with 48 additions and 0 deletions
Binary file not shown.
|
@ -610,21 +610,69 @@ persistence diagrams and Banach spaces.
|
||||||
\section{Vectorization methods}%
|
\section{Vectorization methods}%
|
||||||
\label{sec:vect-meth}
|
\label{sec:vect-meth}
|
||||||
|
|
||||||
|
%% TODO
|
||||||
|
|
||||||
\subsection{Persistence landscapes}
|
\subsection{Persistence landscapes}
|
||||||
|
|
||||||
|
Persistence landscapes~\cite{bubenik_statistical_2015} are a mean to
|
||||||
|
project the barcodes in a space where it will be possible to add them
|
||||||
|
meaningfully. It would thus be possible to define means of persistence
|
||||||
|
diagrams, along other summary statistics.
|
||||||
|
|
||||||
|
As all the other vectorization techniques mentioned here, this
|
||||||
|
approach is \emph{injective}, but not surjective, and no explicit
|
||||||
|
inverse exists to go back from a persistence landscape to the
|
||||||
|
corresponding persistence diagram. Moreover, a mean of persistence
|
||||||
|
landscapes do not necessarily have a corresponding persistence
|
||||||
|
diagram.
|
||||||
|
|
||||||
|
\begin{defn}[Persistence landscape]
|
||||||
|
The persistence landscape of a diagram $D = \{(b_i,d_i)\}_{i=1}^n$
|
||||||
|
is the set of functions $\lambda_k: \mathbb{R} \mapsto \mathbb{R}$,
|
||||||
|
for $k\in\mathbb{N}$ such that
|
||||||
|
\[ \lambda_k(x) = k\text{-th largest value of } \{f_{(b_i,
|
||||||
|
d_i)}(x)\}_{i=1}^n, \] (or zero if the $k$-th largest value does
|
||||||
|
not exist), where $f_{(b,d)}$ is a piecewise linear function defined by:
|
||||||
|
\[ f_{(b,d)} =
|
||||||
|
\begin{cases}
|
||||||
|
0& \text{if }x \notin (b,d)\\
|
||||||
|
x-b& \text{if }x\in (b,\frac{b+d}{2})\\
|
||||||
|
-x+d& \text{if }x\in (\frac{b+d}{2},d).
|
||||||
|
\end{cases}
|
||||||
|
\]
|
||||||
|
\end{defn}
|
||||||
|
|
||||||
|
The persistence landscape is thus a kind of superposition of piecewise
|
||||||
|
linear functions. Moreover, one can show that persistence landscapes
|
||||||
|
are stable with respect to the $L^p$ distance, and that the
|
||||||
|
Wasserstein and bottleneck distances are bounded by the $L^p$
|
||||||
|
distance~\cite{bubenik_statistical_2015}. We can thus view the
|
||||||
|
landscapes as elements of a Banach space in which we can perform the
|
||||||
|
statistical computations.
|
||||||
|
|
||||||
\subsection{Persistence images}
|
\subsection{Persistence images}
|
||||||
|
|
||||||
|
\cite{adams_persistence_2017}
|
||||||
|
|
||||||
\subsection{Tropical and arctic semirings}
|
\subsection{Tropical and arctic semirings}
|
||||||
|
|
||||||
|
\cite{kalisnik_tropical_2018}
|
||||||
|
|
||||||
\section{Kernel-based methods}%
|
\section{Kernel-based methods}%
|
||||||
\label{sec:kernel-based-methods}
|
\label{sec:kernel-based-methods}
|
||||||
|
|
||||||
\subsection{Persistent scale-space kernel}
|
\subsection{Persistent scale-space kernel}
|
||||||
|
|
||||||
|
\cite{reininghaus_stable_2015,kwitt_statistical_2015}
|
||||||
|
|
||||||
\subsection{Persistence weighted gaussian kernel}
|
\subsection{Persistence weighted gaussian kernel}
|
||||||
|
|
||||||
|
\cite{kusano_kernel_2017}
|
||||||
|
|
||||||
\subsection{Sliced Wasserstein kernel}
|
\subsection{Sliced Wasserstein kernel}
|
||||||
|
|
||||||
|
\cite{carriere_sliced_2017}
|
||||||
|
|
||||||
\section{Comparison}%
|
\section{Comparison}%
|
||||||
\label{sec:comparison}
|
\label{sec:comparison}
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue