Dissertation: persistence landscapes

This commit is contained in:
Dimitri Lozeve 2018-07-30 17:45:55 +01:00
parent 72753b6675
commit 34073a3ef8
2 changed files with 48 additions and 0 deletions

Binary file not shown.

View file

@ -610,21 +610,69 @@ persistence diagrams and Banach spaces.
\section{Vectorization methods}% \section{Vectorization methods}%
\label{sec:vect-meth} \label{sec:vect-meth}
%% TODO
\subsection{Persistence landscapes} \subsection{Persistence landscapes}
Persistence landscapes~\cite{bubenik_statistical_2015} are a mean to
project the barcodes in a space where it will be possible to add them
meaningfully. It would thus be possible to define means of persistence
diagrams, along other summary statistics.
As all the other vectorization techniques mentioned here, this
approach is \emph{injective}, but not surjective, and no explicit
inverse exists to go back from a persistence landscape to the
corresponding persistence diagram. Moreover, a mean of persistence
landscapes do not necessarily have a corresponding persistence
diagram.
\begin{defn}[Persistence landscape]
The persistence landscape of a diagram $D = \{(b_i,d_i)\}_{i=1}^n$
is the set of functions $\lambda_k: \mathbb{R} \mapsto \mathbb{R}$,
for $k\in\mathbb{N}$ such that
\[ \lambda_k(x) = k\text{-th largest value of } \{f_{(b_i,
d_i)}(x)\}_{i=1}^n, \] (or zero if the $k$-th largest value does
not exist), where $f_{(b,d)}$ is a piecewise linear function defined by:
\[ f_{(b,d)} =
\begin{cases}
0& \text{if }x \notin (b,d)\\
x-b& \text{if }x\in (b,\frac{b+d}{2})\\
-x+d& \text{if }x\in (\frac{b+d}{2},d).
\end{cases}
\]
\end{defn}
The persistence landscape is thus a kind of superposition of piecewise
linear functions. Moreover, one can show that persistence landscapes
are stable with respect to the $L^p$ distance, and that the
Wasserstein and bottleneck distances are bounded by the $L^p$
distance~\cite{bubenik_statistical_2015}. We can thus view the
landscapes as elements of a Banach space in which we can perform the
statistical computations.
\subsection{Persistence images} \subsection{Persistence images}
\cite{adams_persistence_2017}
\subsection{Tropical and arctic semirings} \subsection{Tropical and arctic semirings}
\cite{kalisnik_tropical_2018}
\section{Kernel-based methods}% \section{Kernel-based methods}%
\label{sec:kernel-based-methods} \label{sec:kernel-based-methods}
\subsection{Persistent scale-space kernel} \subsection{Persistent scale-space kernel}
\cite{reininghaus_stable_2015,kwitt_statistical_2015}
\subsection{Persistence weighted gaussian kernel} \subsection{Persistence weighted gaussian kernel}
\cite{kusano_kernel_2017}
\subsection{Sliced Wasserstein kernel} \subsection{Sliced Wasserstein kernel}
\cite{carriere_sliced_2017}
\section{Comparison}% \section{Comparison}%
\label{sec:comparison} \label{sec:comparison}