Dissertation: stability

This commit is contained in:
Dimitri Lozeve 2018-07-30 17:45:25 +01:00
parent 32aa0ff9be
commit 72753b6675
2 changed files with 26 additions and 1 deletions

View file

@ -462,9 +462,31 @@ diagonal $\Delta$.
\section{Stability}%
\label{sec:stability}
One of the most important aspects of Topological Data Analysis is that
it is \emph{stable} with respect to small perturbations in the
data. In fact, the persistence diagram operator is Lipschitz with
respect to the bottleneck distance. First, we define a distance
between subsets of a metric space.
\begin{defn}[Hausdorff distance]
Let $X$ and $Y$ be subsets of a metric space $(E, d)$. The
\emph{Hausdorff distance} is defined by
\[ d_H(X,Y) = \max \left[ \sup_{x\in X} \inf_{y\in Y} d(x,y),
\sup_{y\in Y} \inf_{x\in X} d(x,y) \right]. \]
\end{defn}
We can now give the proper stability property.
\begin{prop}
Let $X$ and $Y$ be subsets in a metric space. We have
\[ d_B(\dgm(X),\dgm(Y)) \leq d_H(X,Y). \]
\end{prop}
\section{Algorithms and implementations}%
\label{sec:algor-impl}
%% TODO
\cite{morozov_dionysus:_2018,bauer_ripser:_2018,reininghaus_dipha_2018,maria_gudhi_2014}
\chapter{Topological Data Analysis on Networks}%
\label{cha:topol-data-analys}
@ -554,7 +576,8 @@ computing the union of each pair of consecutive time steps,
constructing a alternating sequence.
Zigzag persistence is a special case of the more general concept of
\emph{multi-parameter persistence}~\cite{carlsson_theory_2009}, where
\emph{multi-parameter
persistence}~\cite{carlsson_theory_2009,dey_computing_2014}, where
filtrations can span across multiple parameters.
%% Note about libraries implementing zigzag persistence: Dionysus

View file

@ -29,6 +29,8 @@
\newtheorem*{note}{Note}
\newtheorem*{notation}{Notation}
\DeclareMathOperator{\dgm}{dgm}
\usepackage{tikz-network}
\usepackage{tikz}
\usetikzlibrary{patterns,backgrounds,positioning}