tda-networks/usa_roads.ipynb
2018-03-02 20:28:22 +00:00

235 lines
4.4 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"import graph_tool.all as gt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"gt.show_config()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"# G = gt.load_graph_from_csv(\"data/usa_roads/usa_roads_ny.csv\", eprop_types=[\"int\"], eprop_names=[\"distance\"], string_vals=False)\n",
"# G.save(\"data/usa_roads/usa_roads_ny.gt\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"G = gt.load_graph(\"data/usa_roads/usa_roads_ny.gt\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"print(G)\n",
"G.list_properties()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"dist = G.ep.get(\"distance\")\n",
"dist.get_array()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"filt = G.new_edge_property(\"bool\")\n",
"filt.a = dist.a > 800\n",
"print(filt.a.mean())\n",
"G.set_edge_filter(filt)\n",
"print(G.num_edges())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"ordered_dist = dist.get_array()\n",
"ordered_dist = np.unique(np.sort(ordered_dist))\n",
"ordered_dist"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"import clique as cl"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"condmat = gt.collection.data[\"cond-mat-2005\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"clique_sizes = []\n",
"for c in cl.find_cliques(condmat):\n",
" clique_sizes.append(len(c))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig, ax = plt.subplots()\n",
"ax.hist(clique_sizes, bins=100);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
},
"name": "usa_roads.ipynb"
},
"nbformat": 4,
"nbformat_minor": 2
}