tda-networks/sliced_wasserstein.py
2018-09-10 10:30:45 +01:00

54 lines
1.5 KiB
Python

import numpy as np
import dionysus as d
def diagram_array(dgm):
"""Convert a Dionysus diagram to a Numpy array.
:param dgm: Dionysus Diagram
:return: a Numpy array of tuples representing the points in the
diagram.
"""
res = []
for p in dgm:
if p.death != np.inf:
res.append([p.birth, p.death])
return np.array(res)
def SW_approx(dgm1, dgm2, M):
"""Approximate computation of the Sliced Wasserstein kernel.
:param dgm1: first Diagram
:param dgm2: second Diagram
:param M int: number of directions
:return: The approximate value of the Sliced Wasserstein kernel of
dgm1 and dgm2, sampled over M dimensions.
"""
dgm1 = diagram_array(dgm1)
dgm2 = diagram_array(dgm2)
if dgm1.size == 0 or dgm2.size == 0:
return 0
# Add \pi_\delta(dgm1) to dgm2 and vice-versa
proj1 = dgm1.dot([1, 1])/np.sqrt(2)
proj2 = dgm2.dot([1, 1])/np.sqrt(2)
dgm1 = np.vstack((dgm1, np.vstack((proj2, proj2)).T))
dgm2 = np.vstack((dgm2, np.vstack((proj1, proj1)).T))
SW = 0
theta = -np.pi/2
s = np.pi/M
for i in range(M):
# Project each diagram on the direction theta
vec = [1, np.arctan(theta)]
vec = vec / np.linalg.norm(vec)
V1 = dgm1.dot(vec)
V2 = dgm2.dot(vec)
# Sort the projections
V1.sort()
V2.sort()
# l1-distance between the projections
SW = SW + s * np.sum(np.abs(V1 - V2))
theta = theta + s
return 1/np.pi * SW