235 lines
4.4 KiB
Text
235 lines
4.4 KiB
Text
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import graph_tool.all as gt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"gt.show_config()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# G = gt.load_graph_from_csv(\"data/usa_roads/usa_roads_ny.csv\", eprop_types=[\"int\"], eprop_names=[\"distance\"], string_vals=False)\n",
|
|
"# G.save(\"data/usa_roads/usa_roads_ny.gt\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"G = gt.load_graph(\"data/usa_roads/usa_roads_ny.gt\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"print(G)\n",
|
|
"G.list_properties()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"dist = G.ep.get(\"distance\")\n",
|
|
"dist.get_array()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"filt = G.new_edge_property(\"bool\")\n",
|
|
"filt.a = dist.a > 800\n",
|
|
"print(filt.a.mean())\n",
|
|
"G.set_edge_filter(filt)\n",
|
|
"print(G.num_edges())"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"ordered_dist = dist.get_array()\n",
|
|
"ordered_dist = np.unique(np.sort(ordered_dist))\n",
|
|
"ordered_dist"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"autoscroll": false,
|
|
"collapsed": false,
|
|
"ein.tags": "worksheet-0",
|
|
"slideshow": {
|
|
"slide_type": "-"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import clique as cl"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"condmat = gt.collection.data[\"cond-mat-2005\"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"clique_sizes = []\n",
|
|
"for c in cl.find_cliques(condmat):\n",
|
|
" clique_sizes.append(len(c))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig, ax = plt.subplots()\n",
|
|
"ax.hist(clique_sizes, bins=100);"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.4"
|
|
},
|
|
"name": "usa_roads.ipynb"
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|