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Description

Topological Data Analysis (TDA) [1]–[4] is a family of techniques gaining an increasing importance
in the analysis and visualization of high-dimensional data in machine learning applications.

In this project, we will apply TDA techniques and persistent homology to time-dependent
networks, in order to understand how the topological structure evolves over time in complex
multilayer networks [5], [6].

There are two ways of obtaining time-dependent networks. Network data is available easily in
many contexts: social networks and biological processes are two examples of systems evolving over
time and that can be modelled as a graph. For instance, in social networks, links in ego networks
have already been studied in the context of time-dependency [7].

The other large category is time series. It is possible to use a similarity measure to build a network
from a set of time series taken from the same physical process. Although it could be applied to any
set of time series, this has already been studied in the case of coupled oscillators (such as Kuramoto
oscillators) [8], [9]. It is thus easy to find relevant datasets or to generate interesting data from
physical simulations.

It is then possible to apply existing TDA and persistent homology techniques to the networks,
taking into account the temporal dimension. Certain methods have already been implemented in
topological data analysis libraries [10], [11], although they would have to be adapted to network
data, and applied repeatedly to each time step. There is also a wide range of methods to explore,
from the choice of the similarity measure, to the choice of filtration (in order to build a simplicial
complex on the network), to the representation of topological structure. Each of these choices has a
great influence on the final interpretation of the data, and may need to be adapted to each system.
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Prereqisite courses/knowledge

• SM7 Probability and Statistics for Network Analysis
• Topological Data Analysis and Persistent Homology1

Computing reqired?

Yes

Data available?

Yes
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