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2 Graphs and Temporal Networks

2.1 Definition and basic properties

In this section, we introduce the notion of temporal networks (or temporal graphs). This is a
complex notion, with many concurrent definitions and interpretations.

After clarifying the notations, we restate the standard definition of a non-temporal graph.

Notation. • N is the set of non-negative natural numbers 0, 1, 2, . . .

• N∗ is the set of positive integers 1, 2, . . .

• R is the set of real numbers. R+ = {x ∈ R | x ≥ 0}, and R∗
+ = {x ∈ R | x > 0}.

Definition 2.1 (Graph). A graph is a couple G = (V, E), where V is a set of nodes (or vertices),
and E ⊆ V × V is a set of edges. A weighted graph is defined by G = (V, E, w), where
w : E 7→ R∗

+ is called the weight function.

We also define some basic concepts that we will need later to build simplicial complexes on
graphs.

Definition 2.2 (Clique). A clique is a set of nodes where each pair is adjacent. That is, a clique C
of a graph G = (V, E) is a subset of V such that for all i, j ∈ C, i 6= j =⇒ (i, j) ∈ E. A clique
is said to be maximal if it cannot be augmented by any node, such that the resulting set of nodes
is itself a clique.

Temporal networks can be defined in the more general framework ofmultilayer networks [15].
However, this definition is much too general for our simple applications, and we restrict ourselves
to edge-centric time-varying graphs [9]. In this model, the set of nodes is fixed, but edges can
appear or disappear at different times.

In this study, we restrict ourselves to discrete time stamps. Each interaction is taken to be
instantaneous.

Definition 2.3 (Temporal network). A temporal network is a tuple G = (V, E, T , ρ), where:
• V is a set of nodes,
• E ⊆ V × V is a set of edges,
• T is the temporal domain (often taken as N or any other countable set), and T ⊆ T is the
lifetime of the network,

• ρ : E × T 7→ {0, 1} is the presence function, which determines whether an edge is present
in the network at each time stamp.

The available times of an edge are the set I(e) = {t ∈ T : ρ(e, t) = 1}.

Temporal networks can also have weighted edges. In this case, it is possible to have constant
weights (edges can only appear or disappear over time, and always have the same weight), or
time-varying weights. In the latter case, we can set the domain of the presence function to be R+
instead of {0, 1}, where by convention a 0 weight corresponds to an absent edge.
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Definition 2.4 (Additive and dismantling temporal networks). A temporal network is said to
be additive if for all e ∈ E and t ∈ T , if ρ(e, t) = 1, then for all t′ > t, ρ(e, t′) = 1. An additive
network can only gain edges over time.

A temporal network is said to be dismantling if for all e ∈ E and t ∈ T , if ρ(e, t) = 0, then
for all t′ > t, ρ(e, t′) = 0. An dismantling network can only lose edges over time.

2.2 Examples of applications

2.3 Network partitioning

Temporal networks are a very active research subject, leading to multiple interesting problems.
The additional time dimension adds a significant layer of complexity that cannot be adequately
treated by the common methods on static graphs.

Moreover, data collection can lead to large amount of noise in datasets. Combined with large
dataset sized due to the huge number of data points for each node in the network, temporal
graphs cannot be studied effectively in their raw form. Recent advances have been made to fit
network models to rich but noisy data [21], generally using some variation on the expectation-
maximization (EM) algorithm.

One solution that has been proposed to study such temporal data has been to partition the
time scale of the network into a sequence of smaller, static graphs, representing all the interactions
during a short interval of time. The approach consists in subdividing the lifetime of the network
in sliding windows of a given length. We can then “flatten” the temporal network on each time
interval, keeping all the edges that appear at least once (or adding their weights in the case of
weighted networks).

This partitioning is sensitive to two parameters: the length of each time interval, and their
overlap. Of those, the former is the most important: it will define the resolution of the study. If it
is too small, too much noise will be taken into account; if it is too large, we will lose important
information. There is a need to find a compromise, which will depend on the application and on
the task performed on the network. In the case of a classification task to determine periodicity, it
will be useful to adapt the resolution to the expected period: if we expect week-long periodicity,
a resolution of one day seems reasonable.

Once the network is partitioned, we can apply any statistical learning task on the sequence
of static graphs. In this study, we will focus on classification of time steps. This can be used to
detect periodicity, outliers, or even maximise temporal communities.
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3 Topological Data Analysis and
Persistent Homology

3.1 Basic constructions

3.1.1 Homology

Our goal is to understand the topological structure of a metric space. For this, we can use homology,
which consists of associating a vector space Hi(X) to a metric space X and a dimension i. The
dimension of Hi(X) gives us the number of i-dimensional components in X : the dimension
of H0(X) is the number of path-connected components in X , the dimension of H1(X) is the
number of holes in X , and the dimension of H2(X) is the number of voids.

Crucially, these vector spaces are robust to continuous deformation of the underlying metric
space (they are homotopy invariant). However, computing the homology of an arbitrary metric
space can be extremely difficult. It is necessary to approximate it in a structure that would be
both combinatorial and topological in nature.

3.1.2 Simplicial complexes

To understand the topological structure of a metric space, we need a way to decompose it in
smaller pieces that, when assembled, conserve the overall organisation of the space. For this, we
use a structure called a simplicial complex, which is a kind of higher-dimensional generalization
of a graph.

The building blocks of this representation is the simplex, which is the convex hull of an
arbitrary set of points. Examples of simplices include single points, segments, triangles, and
tetrahedrons (in dimensions 0, 1„ 2, and 3 respectively).

Definition 3.1 (Simplex). A k-dimensional simplex σ = [x0, . . . , xk] is the convex hull of the set
{x0, . . . , xk} ∈ Rd, where x0, . . . , xk are affinely independent. x0, . . . , xk are called the vertices
of σ, and the simplices defined by the subsets of {x0, . . . , xk} are called the faces of σ.

a

(a) Single vertex

a

b

(b) Segment

a

b

c

(c) Triangle

Figure 31: Examples of simplices

We then need a way to meaningfully combine these basic building blocks so that the resulting
object can adequately reflect the topological structure of the metric space.
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Definition 3.2 (Simplicial complex). A simplicial complex is a collection K of simplices such
that:

• any face of a simplex of K is a simplex of K
• the intersection of two simplices of K is either the empty set, or a common face, or both.

Figure 32: Example of a simplicial complex that has two connected components, two 3-simplices,
and one 5-simplex.

The notion of simplicial complex is closely related to that of a hypergraph. One important
distinction lies in the fact that a subset of a hyperedge is not necessarily a hyperedge itself.

Using these definitions, we can define homology on simplicial complexes.

3.1.3 Filtrations

If we consider that a simplicial complex is a kind of “discretization” of a subset of a metric
space, we realise that there must be an issue of scale. For our analysis to be invariant under
small perturbations in the data, we need a way to find the optimal scale parameter to capture
the adequate topological structure, without taking into account some small perturbations, nor
ignoring some important smaller features.

One possible solution to these problems is to consider all scales at once. This is the objective
of filtered simplicial complexes.

Definition 3.3 (Filtration). A filtered simplicial complex, or simply a filtration, K is a sequence
(Ki)i∈I of simplicial complexes such that:

• for any i, j ∈ I , if i < j then Ki ⊆ Kj ,
•

⋃
i∈I Ki = K .

3.2 Persistent Homology

We can now compute the homology for each step in a filtration. This leads to the notion of
persistent homology [5, 30], which gives all the information necessary to establish the topological
structure of a metric space at multiple scales.

Definition 3.4 (Persistent homology). The p-th persistent homology of a simplicial complex K =
(Ki)i∈I is the pair ({Hp(Ki)}i∈I , {fi,j}i,j∈I,i≤j), where for all i ≤ j, fi,j : Hp(Ki) 7→ Hp(Kj)
is induced by the inclusion map Ki 7→ Kj .

The functions fi,j allow one to link generators in each successive homology space in a filtration.
Because each generator corresponds to a topological feature (connected component, hole, void,
and so on, depending on the dimension p), we can determine whether it survives in the next step
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of the filtration. We can also determine when each feature is born and when it dies (if it dies
at all). The couples of intervals (birth time, death time) depends on the choice of basis for each
homology space Hp(Ki). However, by the Fundamental Theorem of Persistent Homology [30],
we can choose basis vectors in each homology space such that the collection of half-open intervals
is well-defined and unique. This construction is called a barcode [5].

3.3 Topological summaries: barcodes and persistence diagrams

To interpret the results of the persistent-homology computation, we need to compare the output
for a particular data set to a suitable null model. For this, we need some kind of similarity measure
between barcodes and a way to evaluate the statistical significance of the results.

One possible approach is to define a space in which we can project barcodes and study their
geometric properties. One such space is the space of persistence diagrams [13].

Definition 3.5 (Multiset). A multiset M is the couple (A, m), where A is the underlying set
of M , formed by its distinct elements, and m : A 7→ N∗ is the multiplicity function giving the
number of occurrences of each element of A in M .

Definition 3.6 (Persistence diagrams). A persistence diagram is the union of a finite multiset
of points in R2 with the diagonal ∆ = {(x, x) | x ∈ R2}, where every point of ∆ has infinite
multiplicity.

One adds the diagonal ∆ for technical reasons. It is convenient to compare persistence dia-
grams by using bijections between them, so persistence diagrams must have the same cardinality.

In some cases, the diagonal in the persistence diagrams can also facilitate comparisons between
diagrams, as points near the diagonal correspond to short-lived topological features, so they are
likely to be caused by small perturbations in the data.

One can build a persistence diagram from a barcode by taking the union of the multiset of
(birth, death) couples with the diagonal ∆. Figure 33 summarises the entire pipeline.

Data Filtered complex Persistence diagram Interpretation

Figure 33: Persistent homology pipeline

One can define an operator dgm as the first two steps in the pipeline. It constructs a persistence
diagram from a subset of a metric space, via persistent homology on a filtered complex.

We can now define several distances on the space of persistence diagrams.

Definition 3.7 (Wasserstein distance). The p-th Wasserstein distance between two diagrams X
and Y is

Wp[d](X, Y ) = inf
φ:X 7→Y

[ ∑
x∈X

d (x, φ(x))p

]

for p ∈ [1, ∞), and:
W∞[d](X, Y ) = inf

φ:X 7→Y
sup
x∈X

d (x, φ(x))

for p = ∞, where d is a distance on R2 and φ ranges over all bijections from X to Y .

Definition 3.8 (Bottleneck distance). The bottleneck distance is defined as the infinite Wasserstein
distance where d is the uniform norm: dB = W∞[L∞].
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The bottleneck distance is symmetric, non-negative, and satisfies the triangle inequality.
However, it is not a true distance, as one can come up with two distinct diagrams with bottleneck
distance 0, even on multisets that do not touch the diagonal ∆.

3.4 Stability

One of the most important aspects of topological data analysis is that it is stable with respect to
small perturbations in the data. More precisely, the second step of the pipeline in Figure 33 is
Lipschitz with respect to a suitable metric on filtered complexes and the bottleneck distance on
persistence diagrams [10, 11]. First, we define a distance between subsets of a metric space [23].

Definition 3.9 (Hausdorff distance). Let X and Y be subsets of a metric space (E, d). The
Hausdorff distance is defined by

dH(X, Y ) = max
[

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
]

.

We can now give an appropriate stability property [10, 11].

Proposition 3.1. Let X and Y be subsets in a metric space. We have

dB(dgm(X), dgm(Y )) ≤ dH(X, Y ).

3.5 Algorithms and implementations

[3, 18, 19, 25]

3.6 Discussion
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4 Topological Data Analysis on Networks

4.1 Persistent homology for networks

We now consider the problem of applying persistent homology to network data. An undirected
network is already a simplicial complex of dimension 1. However, this is not sufficient to capture
enough topological information; we need to introduce higher-dimensional simplices. One method
is to project the nodes of a network onto a metric space [22], thereby transforming the network
data into a point-cloud data. For this, we need to compute the distance between each pair of
nodes in the network (e.g. with the shortest-path distance). This also requires the network to be
connected.

Another common method, for weighted networks, is called the weight rank-clique filtration
(WRCF) [24], which filters a network based on weights. The procedure works as follows:

1. Consider the set of all nodes, without any edge, to be filtration step 0.

2. Rank all edge weights in decreasing order {w1, . . . , wn}.

3. At filtration step t, keep only the edges whose weights are larger than or equal to wt,
thereby creating an unweighted graph.

4. Define the maximal cliques of the resulting graph to be simplices.

At each step of the filtration, we construct a simplicial complex based on cliques; this is
called a clique complex [29]. The result of the algorithm is itself a filtered simplicial complex
(definition 3.3), because a subset of a clique is necessarily a clique itself, and the same is true for
the intersection of two cliques.

This leads to a first possibility for applying persistent homology to temporal networks. It is
possible to segment the lifetime of a network into sliding windows, creating a time-independent
graph on each window by retaining only the edges available during the time interval. We can
then apply WRCF on each graph in the sequence, obtaining a filtered complex for each window,
to which we can then apply persistent homology.

This method can quickly become very computationally expensive, as finding all maximal
cliques (e.g. using the Bron–Kerbosch algorithm) is a complicated problem, with an optimal
computational complexity of O

(
3n/3)

[27]. In practice, one often restrict the search to cliques
of dimension less than or equl to a certain bound dM . With this restriction, the new simplicial
complex is homologically equivalent to the original: they have the same homology groups up to
HdM −1.

This method is sensitive to the choice of sliding windows on the time scale. The width and the
overlap of the windows can completely change the networks created and their topological features.
Too small a window, and the network becomes too small to have any significant topological
properties, too large, and we lose important information in the evolution of the network over
time.
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4.2 Zigzag persistence

The standard algorithm to compute persistent homology (see section 3.2) relies on the fact that
filtrations (see definition 3.3) are nested sequences of simplicial complexes:

· · · ⊆ Ki−1 ⊆ Ki ⊆ Ki+1 ⊆ · · ·

One can now create an independent filtration (e.g. with WRCF) for each time step. The issue
is that the topological features will be orthogonal to the time dimension.

Another possibility is to create a filtration along the time dimension. The issue in this case
is that the sequence is no longer nested (except for additive or dismantling temporal networks,
see definition 2.4).

The solution to consider the time dimension is provided by zigzag persistence [6], which
allows one to compute persistence on alternating nested sequences:

· · · ⊇ Ki−1 ⊆ Ki ⊇ Ki+1 ⊆ · · ·

This sequence can in turn be computed from a temporal network by computing the union of
each pair of consecutive time steps, constructing an alternating sequence.

Zigzag persistence is a special case of the more general concept of multi-parameter persist-
ence [7, 12], where filtrations can encompass multiple parameters.

9



5 Persistent Homology for
Machine-Learning Applications

The output of persistent homology is not directly usable by most statistical methods. For example,
barcodes and persistence diagrams, which are multisets of points in R2, are not elements of a
metric space in which one can perform statistical computations.

The distances between persistence diagrams defined in section 3.3 allow one to compare
different outputs. From a statistical perspective, it is possible to use a generative model of
simplicial complexes and to use a distance between persistence diagrams to measure the similarity
of our observations with this null model [2]. This would effectively define a metric space of
persistence diagrams. It is even possible to define some statistical summaries (means, medians,
confidence intervals) on these spaces [20, 28].

The issue with this approach is that metric spaces do not offer enough algebraic structure
to be amenable to most machine-learning techniques. One of the most recent development in
the study of topological summaries has been to find mappings between the space of persistence
diagrams and Banach spaces.

5.1 Vectorization methods

5.1.1 Persistence landscapes

Persistence landscapes [4] give a way to project barcodes to a space where it is possible to add
them meaningfully. It is then possible to define means of persistence diagrams, as well as other
summary statistics.

The function mapping a persistence diagram to a persistence landscape is injective, but no
explicit inverse exists to go back from a persistence landscape to the corresponding persistence
diagram. Moreover, a mean of persistence landscapes does not necessarily have a corresponding
persistence diagram.

Definition 5.1 (Persistence landscape). Thepersistence landscape of a diagramD = {(bi, di)}n
i=1

is the set of functions λk : R 7→ R, for k ∈ N, such that

λk(x) = k-th largest value of {f(bi,di)(x)}n
i=1,

(and λk(x) = 0 if the k-th largest value does not exist), where f(b,d) is a piecewise-linear function
defined by:

f(b,d) =


0, if x /∈ (b, d),
x − b, if x ∈ (b, b+d

2 ),
−x + d, if x ∈ ( b+d

2 , d) .

Moreover, one can show that persistence landscapes are stable with respect to the Lp distance,
and that the Wasserstein and bottleneck distances are bounded by the Lp distance [4]. We can
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thus view the landscapes as elements of a Banach space in which we can perform the statistical
computations.

5.1.2 Persistence images

[1]

5.1.3 Tropical and arctic semirings

[14]

5.2 Kernel-based methods

5.2.1 Persistent scale-space kernel

[17, 26]

5.2.2 Persistence weighted-Gaussian kernel

[16]

5.2.3 Sliced Wasserstein kernel

[8]

5.3 Comparison
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6 Conclusions
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