
DR
AF
T

University of Oxford

Topological Data Analysis of Temporal
Networks

by

Dimitri Lozeve

St Catherine’s College

A dissertation submitted in partial fulfilment of the degree of Master of Science in
Applied Statistics

Department of Statistics, 24–29 St Giles,
Oxford, OX1 3LB

September 2018





Declaration of authorship

This my own work (except where otherwise indicated).

Date Signature

i





Abstract

Abstract here

iii





Acknowledgements

Thank you!

v





Contents

Abstract iii

1 Introduction 1

2 Graphs and Temporal Networks 2
2.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Examples of applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Network partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Topological Data Analysis and Persistent Homology 4
3.1 Basic constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.2 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.3 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Topological summaries: barcodes and persistence diagrams . . . . . . . . . . . . 6
3.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Algorithms and implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Topological Data Analysis on Networks 8
4.1 Persistent homology for networks . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Zigzag persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Persistent Homology for Machine Learning applications 10
5.1 Vectorization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1.1 Persistence landscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1.2 Persistence images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.3 Tropical and arctic semirings . . . . . . . . . . . . . . . . . . . . . . . . 11

5.2 Kernel-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.1 Persistent scale-space kernel . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2.2 Persistence weighted gaussian kernel . . . . . . . . . . . . . . . . . . . . 11
5.2.3 Sliced Wasserstein kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



Bibliography 12

List of Figures

31 Examples of simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
32 Example of a simplicial complex, with two connected components, two 3-simplices,

and one 5-simplex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

List of Tables

viii



1 Introduction

1



2 Graphs and Temporal Networks

2.1 Definition and basic properties

In this section, we will introduce the notion of temporal networks or graphs. This is a complex
notion, with many concurrent definitions and interpretations. First, we restate the standard
definition of a non-temporal, static graph.

Definition 2.1 (Graph). A graph is a couple G = (V, E), where V is a finite set of nodes (or
vertices), and E ⊆ V × V is a set of edges. A weighted graph is defined by G = (V, E, w), where
w : E 7→ R+ is fcalled the weight function.

We also define some basic concepts that will be needed later on to build simplicial complexes
on graphs.

Definition 2.2 (Clique). A clique is a set of nodes where each pair is connected. That is, a clique
C of a graph G = (V, E) is a subset of V such that ∀i, j ∈ C, i 6= j =⇒ (i, j) ∈ E. A clique is
said to be maximal if it cannot be augmented by any node.

Temporal networks are defined in the more general framework of multilayer networks [12].
However, this definition is much too general for our simple applications, and we restrict ourselves
to edge-centric time-varying graphs [9]. In this model, the set of nodes is fixed and doesn’t change
over time, whereas edges can appear or disappear at different timestamps.

Definition 2.3 (Temporal network). A temporal network (or graph) is a tuple G = (V, E, T , ρ),
where:

• V is a finite set of nodes,
• E ⊆ V × V is a set of edges,
• T is the temporal domain (often taken asN orR+), and T ⊆ T is the lifetime of the network,
• ρ : E × T 7→ {0, 1} is the presence function, which determines whether an edge is present
in the network at each timestamp.

The available dates of an edge are the set I(e) = {t ∈ T : ρ(e, t) = 1}.

Temporal networks can also have weighted edges. In this case, it is possible to have constant
weights (edges can only appear or disappear over time, and always have the same weight), or
time-varying weights. In the latter case, we can set the domain of the presence function to be R+
instead of {0, 1}, where by convention a zero weight corresponds to an absent edge.

Definition 2.4 (Additive temporal network). A temporal network is said to be additive if for
all e ∈ E and t ∈ T , if ρ(e, t) = 1, then ∀t′ > t, ρ(e, t′) = 1. Edges can only be added to the
network, never removed.
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2.2 Examples of applications

2.3 Network partitioning

Temporal networks are a very active research subject, leading to multiple interesting problems.
The additional time dimension adds a significant layer of complexity that cannot be adequately
treated by the common methods on static graphs.

Moreover, data collection can lead to large amount of noise in datasets. Combined with large
dataset sized due to the huge number of data points for each node in the network, temporal
graphs cannot be studied effectively in their raw form. Recent advances have been made to fit
network models to rich but noisy data [18], generally using some variation on the expectation-
maximization (EM) algorithm.

One solution that has been proposed to study such temporal data has been to partition the
time scale of the network into a sequence of smaller, static graphs, representing all the interactions
during a short interval of time. The approach consists in subdividing the lifetime of the network
in sliding windows of a given length. We can then “flatten” the temporal network on each time
interval, keeping all the edges that appear at least once (or adding their weights in the case of
weighted networks).

This partitioning is sensitive to two parameters: the length of each time interval, and their
overlap. Of those, the former is the most important: it will define the resolution of the study. If it
is too small, too much noise will be taken into account; if it is too large, we will lose important
information. There is a need to find a compromise, which will depend on the application and on
the task performed on the network. In the case of a classification task to determine periodicity, it
will be useful to adapt the resolution to the expected period: if we expect week-long periodicity,
a resolution of one day seems reasonable.

Once the network is partitioned, we can apply any statistical learning task on the sequence
of static graphs. In this study, we will focus on classification of time steps. This can be used to
detect periodicity, outliers, or even maximise temporal communities.
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3 Topological Data Analysis and
Persistent Homology

3.1 Basic constructions

3.1.1 Homology

Our goal is to understand the topological structure of a metric space. For this, we can use
homology, which consists in associating for a metric space X and a dimension i a vector space
Hi(X). The dimension of Hi(X) will give us the number of i-dimensional components in X :
the dimension of H0(X) is the number of path-connected components in X , the dimension of
H1(X) is the number of holes in X , and the dimension of H2(X) is the number of voids.

Crucially, these vector spaces are robust to continuous deformation of the underlying metric
space (they are homotopy invariant). However, computing the homology of an arbitrary metric
space can be extremely difficult. It is necessary to approximate it in a structure that would be
both combinatorial and topological in nature.

3.1.2 Simplicial Complexes

In order to understand the topological structure of a metric space, we need a way to decompose it
in smaller pieces which, when assembled, conserve the overall organisation of the space. For this,
we use a structure called a simplicial complex, which is a kind of higher-dimensional generalization
of graphs.

The building blocks of this representation will be simplices, which are simply the convex hull
of an arbitrary set of points. Examples of simplices include single points, segments, triangles, and
tetrahedrons (in dimensions 0, 1„ 2, and 3 respectively).

Definition 3.1 (Simplex). The k-dimensional simplex σ = [x0, . . . , xk] is the convex hull of the
set {x0, . . . , xk} ∈ Rd, where x0, . . . , xk are affinely independent. x0, . . . , xk are called the
vertices of σ, and the simplices defined by the subsets of {x0, . . . , xk} are called the faces of σ.

a

(a) Single vertex

a

b

(b) Segment

a

b

c

(c) Triangle

Figure 31: Examples of simplices

We then need a way to combine these basic building blocks meaningfully so that the resulting
object can adequately reflect the topological structure of the metric space.
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Definition 3.2 (Simplicial complex). A simplicial complex is a collection K of simplices such
that:

• any face of a simplex of K is a simplex of K
• the intersection of two simplices of K is either the empty set or a common face or both.

Figure 32: Example of a simplicial complex, with two connected components, two 3-simplices,
and one 5-simplex.

The notion of simplicial complex is closely related to that of a hypergraph. The important
distinction lies in the fact that a subset of a hyperedge is not necessarily a hyperedge itself.

Using these definitions, we can define homology on simplicial complexes.

3.1.3 Filtrations

If we consider that a simplicial complex is a kind of “discretization” of a metric space, we realise
that there must be an issue of scale. For our analysis to be invariant under small perturbations in
the data, we need a way to find the optimal scale parameter to capture the adequate topological
structure, without taking into account some small perturbations, nor ignoring some important
smaller features.

The ideal solution to these problems is to consider all scales at once: this is the objective of
filtered simplical complexes.

Definition 3.3 (Filtration). A filtered simplicial complex, or simply a filtration, K is a sequence
(Ki)i∈I of simplicial complexes such that:

• for any i, j ∈ I , if i < j then Ki ⊆ Kj ,
•

⋃
i∈I Ki = K .

3.2 Persistent Homology

We can now compute the homology for each step in a filtration. This leads to the notion of persistent
homology [5, 24], which gives us all the information necessary to establish the topological structure
of the metric space at multiple scales.

Definition 3.4 (Persistent homology). The p-th persistent homology of a simplicial complex K =
(Ki)i∈I is the pair ({Hp(Ki)}i∈I , {fi,j}i,j∈I,i≤j), where for all i ≤ j, fi,j : Hp(Ki) 7→ Hp(Kj)
is induced by the inclusion map Ki 7→ Kj .

The functions fi,j allow us to link generators in each successive homology space in the
filtration. Since each generator correspond to a topological feature (connected component, hole,
void, etc, depending on the dimension p), we can determine whether it survives in the next step
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of the filtration. We can now determine when each feature is born and when it dies (if it dies
at all). This representation will be dependent on the choice of basis for each homology space
Hp(Ki). However, by the Fundamental Theorem of Persistent Homology, we can choose base
vectors in each homology space such that the collection of half-open intervals is well-defined and
unique. This construction is called a barcode.

3.3 Topological summaries: barcodes and persistence diagrams

In order to interpret the results of the persistent homology computation, we need to compare the
output for a particular data set to a suitable null model. For this, we need some kind of a similarity
measure between barcodes and a way to evaluate the statistical significance of the results.

One possible approach for this is to define a space in which we can project barcodes and study
their geometric properties. Persistence diagrams are an example of such a space.

Definition 3.5 (Persistence diagrams). A persistence diagram is the union of a finite multiset
of points in R2 zith the diagonal ∆ = {(x, x) | x ∈ R2}, where every point of ∆ has infinite
multiplicity.

The diagonal ∆ is added to facilitate comparisons between diagrams, as points near the diag-
onal correspond to short-lived topological feature, thus likely to be caused by small perturbations
in the data.

We can now define several distances on the space of persistence diagrams.

Definition 3.6 (Wasserstein distance). The p-th Wasserstein distance between two diagrams X
and Y is

Wp[d](X, Y ) = inf
φ:X 7→Y

[ ∑
x∈X

d (x, φ(x))p

]
for p ∈ [1, ∞), and

W∞[d](X, Y ) = inf
φ:X 7→Y

sup
x∈X

d (x, φ(x))

for p = ∞, where d is a distance on R2 and φ ranges over all bijections from X to Y .

Definition 3.7 (Bottleneck distance). The bottleneck distance is defined as the infinite Wasserstein
distance with d the uniform norm: dB = W∞[L∞].

Since the bottleneck distance is by far the most commonly used, we will focus on it in the
following. It is symmetric, non-negative, and satisfies the triangle inequality. However, it is not a
true distance, as it is fairly straightforward to come up with two distinct diagrams at bottleneck
distance zero, even on multisets not touching the diagonal ∆.

3.4 Stability

One of the most important aspects of Topological Data Analysis is that it is stable with respect to
small perturbations in the data. In fact, the persistence diagram operator is Lipschitz with respect
to the bottleneck distance. First, we define a distance between subsets of a metric space.

Definition 3.8 (Hausdorff distance). Let X and Y be subsets of a metric space (E, d). The
Hausdorff distance is defined by

dH(X, Y ) = max
[

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
]

.
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We can now give the proper stability property.

Proposition 3.1. Let X and Y be subsets in a metric space. We have

dB(dgm(X), dgm(Y )) ≤ dH(X, Y ).

3.5 Algorithms and implementations

[3, 15, 16, 21]
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4 Topological Data Analysis on Networks

4.1 Persistent homology for networks

We now consider the problem of applying persistent homology to network data. An undirected
network is already a simplicial complex of dimension 1. However, this will not be sufficient to
capture enough topological information: we need to introduce higher-dimensional simplices.
The first possible method is to project the network on a metric space [19], thus transforming
the network data into a point cloud data. For this, we need to compute the distance between
each pair of nodes in the network (via shortest path distance for instance). This also requires the
network to be connected.

Another usual method for weighted networks is called the weight rank clique filtration
(WRCF) [20], which filters the network based on weights. The procedure works as follows:

1. Set the set of all nodes, without any edge, as filtration step 0.
2. Rank all edge weights in decreasing order {w1, . . . , wn}.
3. At filtration step t, keep only the edges whose weights are less than wt, thus creating an

unweighted graph.
4. Define the maximal cliques of the resulting graph to be simplices.
At each step of the filtration, we construct a simplicial complex based on cliques: this is called

a clique complex. It is necessarily valid since a subset of a clique is necessarily a clique itself, and
the same is true for the intersection of two cliques.

This leads to a first possibility for applying persistent homology to temporal networks. It is
possible to segment the lifetime of the network into sliding windows, creating a static graph on
each window by retaining only the edges available during the time interval. We can then apply
WRCF on each static graph in the sequence, obtaining a filtered complex for each window, to
which we can then apply persistent homology.

This method can quickly become very computationally expensive, as finding all maximal
cliques (using the Bron-Kerbosch algorithm for example) is a complicated problem in itself. In
practice, we often restrict the search to cliques of dimension lower than a certain bound dM .
With this restriction, the new simplicial complex is homologically equivalent to the original: they
have the same homology groups up to HdM −1.

This method is sensitive to the choice of sliding windows on the time scale. The width and the
overlap of the windows can completely change the networks created and their topological features.
Too small a window, and the network becomes too small to have any significant topological
properties, too large, and we lose important information in the evolution of the network over
time.

4.2 Zigzag persistence

The standard algorithm to compute persistent homology (section 3.2) only works for filtrations
which are nested sequences of simplicial complexes:

· · · ⊆ Ki−1 ⊆ Ki ⊆ Ki+1 ⊆ · · ·

8



When studying temporal networks, we have two possibilities:
• Create an independent filtration (e.g. WRCF) from each time step. The issue is that the
topological features will be completely disconnected from the time dimension.

• Create a filtration along the time dimension. The issue in this case is that the sequence is
no longer nested (except for additive temporal networks, ie when edges are never deleted).

The solution to consider the time dimension is provided by zigzag persistence [6], which
allows to compute persistence on alternating nested sequences:

· · · ⊇ Ki−1 ⊆ Ki ⊇ Ki+1 ⊆ · · ·

This sequence can in turn be computed from a temporal network by computing the union of
each pair of consecutive time steps, constructing a alternating sequence.

Zigzag persistence is a special case of the more general concept of multi-parameter persist-
ence [7, 10], where filtrations can span across multiple parameters.

9



5 Persistent Homology for Machine
Learning applications

The output of persistent homology is not directly usable by most statistical methods. Barcodes
and persistence diagrams, being a multiset of points in R2, are not elements of a metric space in
which we could perform statistical computations.

The distances between persistence diagrams defined in section 3.3 allow us to compare different
outputs. From a statistical perspective, it is possible to use a generative model of simplicial
complexes, and use a distance between persistence diagrams to measure the similarity of our
observations with this null model [2]. This would effectively define a metric space of persistence
diagrams. It is even possible to define some statistical summaries (means, medians, confidence
intervals) on these spaces [17, 23].

The issue with this approach is that metric spaces do not offer enough algebraic structure
to be amenable to most machine learning techniques. One of the most recent development in
the study of topological summaries has been to find mappings between the space of persistence
diagrams and Banach spaces.

5.1 Vectorization methods

5.1.1 Persistence landscapes

Persistence landscapes [4] are a mean to project the barcodes in a space where it will be possible
to add them meaningfully. It would thus be possible to define means of persistence diagrams,
along other summary statistics.

As all the other vectorization techniques mentioned here, this approach is injective, but
not surjective, and no explicit inverse exists to go back from a persistence landscape to the
corresponding persistence diagram. Moreover, a mean of persistence landscapes do not necessarily
have a corresponding persistence diagram.

Definition 5.1 (Persistence landscape). Thepersistence landscape of a diagramD = {(bi, di)}n
i=1

is the set of functions λk : R 7→ R, for k ∈ N such that

λk(x) = k-th largest value of {f(bi,di)(x)}n
i=1,

(or zero if the k-th largest value does not exist), where f(b,d) is a piecewise linear function defined
by:

f(b,d) =


0 if x /∈ (b, d)
x − b if x ∈ (b, b+d

2 )
−x + d if x ∈ ( b+d

2 , d).

The persistence landscape is thus a kind of superposition of piecewise linear functions.
Moreover, one can show that persistence landscapes are stable with respect to the Lp distance,
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and that the Wasserstein and bottleneck distances are bounded by the Lp distance [4]. We can
thus view the landscapes as elements of a Banach space in which we can perform the statistical
computations.

5.1.2 Persistence images

[1]

5.1.3 Tropical and arctic semirings

[11]

5.2 Kernel-based methods

5.2.1 Persistent scale-space kernel

[14, 22]

5.2.2 Persistence weighted gaussian kernel

[13]

5.2.3 Sliced Wasserstein kernel

[8]

5.3 Comparison
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