{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "import graph_tool.all as gt" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "gt.show_config()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "# G = gt.load_graph_from_csv(\"data/usa_roads/usa_roads_ny.csv\", eprop_types=[\"int\"], eprop_names=[\"distance\"], string_vals=False)\n", "# G.save(\"data/usa_roads/usa_roads_ny.gt\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "G = gt.load_graph(\"data/usa_roads/usa_roads_ny.gt\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "print(G)\n", "G.list_properties()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "dist = G.ep.get(\"distance\")\n", "dist.get_array()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "filt = G.new_edge_property(\"bool\")\n", "filt.a = dist.a > 800\n", "print(filt.a.mean())\n", "G.set_edge_filter(filt)\n", "print(G.num_edges())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "ordered_dist = dist.get_array()\n", "ordered_dist = np.unique(np.sort(ordered_dist))\n", "ordered_dist" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "autoscroll": false, "collapsed": false, "ein.tags": "worksheet-0", "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "import clique as cl" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "condmat = gt.collection.data[\"cond-mat-2005\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "clique_sizes = []\n", "for c in cl.find_cliques(condmat):\n", " clique_sizes.append(len(c))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = plt.subplots()\n", "ax.hist(clique_sizes, bins=100);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" }, "name": "usa_roads.ipynb" }, "nbformat": 4, "nbformat_minor": 2 }