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1 Introduction



2 Topological Data Analysis and
Persistent Homology

2.1 HomMmoLoaGgy

Our goal is to understand the topological structure of a metric space. For this, we can use
homology, which consists in associating for a metric space X and a dimension 7 a vector space
H;(X). The dimension of H;(X) will give us the number of i-dimensional components in X:
the dimension of Hy(X) is the number of path-connected components in X, the dimension of
H(X) is the number of holes in X, and the dimension of Hy(X) is the number of voids.

Crucially, these vector spaces are robust to continuous deformation of the underlying metric
space (they are homotopy invariant). However, computing the homology of an arbitrary metric
space can be extremely difficult. It is necessary to approximate it in a structure that would be
both combinatorial and topological in nature.

2.2 SimpLiciAL COMPLEXES

In order to understand the topological structure of a metric space, we need a way to decompose it
in smaller pieces which, when assembled, conserve the overall organisation of the space. For this,
we use a structure called a simplicial complex, which is a kind of higher-dimensional generalization
of graphs.

The building blocks of this representation will be simplices, which are simply the convex hull
of an arbitrary set of points. Examples of simplices include single points, segments, triangles, and
tetrahedrons (in dimensions o, 1,, 2, and 3 respectively).

Definition 2.1 (Simplex). The k-dimensional simplex o = [x, ..., xy] is the convex hull of the
set {xo,..., 21} € R?, where xg, ...,z are affinely independent. xg, ..., are called the
vertices of o, and the simplices defined by the subsets of {xy, ..., x}} are called the faces of o.

We then need a way to combine these basic building blocks meaningfully so that the resulting
object can adequately reflect the topological structure of the metric space.

Definition 2.2 (Simplicial complex). A simplicial complex is a collection K of simplices such
that:

« any face of a simplex of K is a simplex of K

« the intersection of two simplices of K is either the empty set or a common face or both.

Using these definitions, we can define homology on simplicial complexes.

2.3 FILTRATIONS

If we consider that a simplicial complex is a kind of “discretization” of a metric space, we realise
that there must be an issue of scale. For our analysis to be invariant under small perturbations in



the data, we need a way to find the optimal scale parameter to capture the adequate topological
structure, without taking into account some small perturbations, nor ignoring some important
smaller features.

The ideal solution to these problems is to consider all scales at once: this is the objective of
filtered simplical complexes.

Definition 2.3 (Filtration). A filtered simplicial complex, or simply a filtration, K is a sequence
(K);c of simplicial complexes such that:

« forany,j € 1,if¢ < j then K; C K,

s Uier Ki = K.

2.4 PERSISTENT HOMOLOGY

We can now compute the homology for each step in a filtration. This leads to the notion of
persistent homology, which gives us all the information necessary to establish the topological
structure of the metric space at multiple scales.

Definition 2.4 (Persistent homology). The p-th persistent homology of a simplicial complex K =
(Ki)iel is the pair ({Hp(Ki)}iGIa {fi,j}i,je[,igj), where fOI‘ all 7 § j, f’i,j . Hp(Kl) — Hp(Kj)
is induced by the inclusion map K; — Kj.

The functions f; ; allow us to link generators in each successive homology space in the
filtration. Since each generator correspond to a topological feature (connected component, hole,
void, etc, depending on the dimension p), we can determine whether it survives in the next step
of the filtration. We can now determine when each feature is born and when it dies (if it dies
at all). This representation will be dependent on the choice of basis for each homology space
H,(K;). However, by the Fundamental Theorem of Persistent Homology, we can choose base
vectors in each homology space such that the collection of half-open intervals is well-defined and
unique. This construction is called a barcode.

2.5 TOPOLOGICAL SUMMARIES: BARCODES AND PERSISTENCE DIAGRAMS

In order to interpret the results of the persistent homology computation, we need to compare the
output for a particular data set to a suitable null model. For this, we need some kind of a similarity
measure between barcodes and a way to evaluate the statistical significance of the results.

One possible approach for this is to define a space in which we can project barcodes and study
their geometric properties. Persistence diagrams are an example of such a space.

Definition 2.5 (Persistence diagrams). A persistence diagram is the union of a finite multiset
of points in R? zith the diagonal A = {(x,z) | * € R?}, where every point of A has infinite
multiplicity.

The diagonal A is added to facilitate comparisons between diagrams, as points near the diag-
onal correspond to short-lived topological feature, thus likely to be caused by small perturbations
in the data.

We can now define several distances on the space of persistence diagrams.

Definition 2.6 (Wasserstein distance). The p-th Wasserstein distance between two diagrams X
and Y is

W,[d(X,Y) = inf [Zd ]

$ XY



for p € [1,00), and
Weold|(X,Y) = inf supd(z,d(x))

$:X=Y geXx

for p = oo, where d is a distance on R? and ¢ ranges over all bijections from X to Y.

Definition 2.7 (Bottleneck distance). The bottleneck distance is defined as the infinite Wasserstein
distance with d the uniform norm: dp = W [Loo].

Since the bottleneck distance is by far the most commonly used, we will focus on it in the
following. It is symmetric, non-negative, and satisfies the triangle inequality. However, it is not a
true distance, as it is fairly straightforward to come up with two distinct diagrams at bottleneck
distance zero, even on multisets not touching the diagonal A.

2.6 STABILITY
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