Dissertation: PH for ML
This commit is contained in:
parent
141309f6f2
commit
cc8fc60a1b
4 changed files with 66 additions and 5 deletions
|
@ -806,4 +806,17 @@ novel application of the discriminatory power of {PIs}.},
|
||||||
date = {2017-07-17},
|
date = {2017-07-17},
|
||||||
langid = {english},
|
langid = {english},
|
||||||
file = {arXiv\:1706.03358 PDF:/home/dimitri/Zotero/storage/NWMEA95P/Carrière et al. - 2017 - Sliced Wasserstein Kernel for Persistence Diagrams.pdf:application/pdf;Full Text PDF:/home/dimitri/Zotero/storage/7FZZJDKP/Carrière et al. - 2017 - Sliced Wasserstein Kernel for Persistence Diagrams.pdf:application/pdf;Snapshot:/home/dimitri/Zotero/storage/VDXI2J8D/carriere17a.html:text/html}
|
file = {arXiv\:1706.03358 PDF:/home/dimitri/Zotero/storage/NWMEA95P/Carrière et al. - 2017 - Sliced Wasserstein Kernel for Persistence Diagrams.pdf:application/pdf;Full Text PDF:/home/dimitri/Zotero/storage/7FZZJDKP/Carrière et al. - 2017 - Sliced Wasserstein Kernel for Persistence Diagrams.pdf:application/pdf;Snapshot:/home/dimitri/Zotero/storage/VDXI2J8D/carriere17a.html:text/html}
|
||||||
|
}
|
||||||
|
|
||||||
|
@book{adler_persistent_2010,
|
||||||
|
title = {Persistent homology for random fields and complexes},
|
||||||
|
isbn = {978-0-940600-79-9},
|
||||||
|
url = {https://projecteuclid.org/euclid.imsc/1288099016},
|
||||||
|
abstract = {Project Euclid - mathematics and statistics online},
|
||||||
|
publisher = {Institute of Mathematical Statistics},
|
||||||
|
author = {Adler, Robert J. and Bobrowski, Omer and Borman, Matthew S. and Subag, Eliran and Weinberger, Shmuel},
|
||||||
|
urldate = {2018-07-30},
|
||||||
|
date = {2010},
|
||||||
|
doi = {10.1214/10-IMSCOLL609},
|
||||||
|
file = {Full Text PDF:/home/dimitri/Zotero/storage/N8UHEK9G/Adler et al. - 2010 - Persistent homology for random fields and complexe.pdf:application/pdf;Snapshot:/home/dimitri/Zotero/storage/29PXN97Q/1288099016.html:text/html}
|
||||||
}
|
}
|
Binary file not shown.
|
@ -530,12 +530,60 @@ in the evolution of the network over time.
|
||||||
\label{sec:zigzag-persistence}
|
\label{sec:zigzag-persistence}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\chapter{Persistent Homology for Machine Learning applications}%
|
||||||
|
\label{cha:pers-homol-mach}
|
||||||
|
|
||||||
|
The output of persistent homology is not directly usable by most
|
||||||
|
statistical methods. Barcodes and persistence diagrams, being a
|
||||||
|
multiset of points in $\overline{\mathbb{R}}^2$, are not elements of a
|
||||||
|
metric space in which we could perform statistical computations.
|
||||||
|
|
||||||
|
The distances between persistence diagrams defined
|
||||||
|
in~\autoref{sec:topol-summ} allow us to compare different
|
||||||
|
outputs. From a statistical perspective, it is possible to use a
|
||||||
|
generative model of simplicial complexes, and use a distance between
|
||||||
|
persistence diagrams to measure the similarity of our observations
|
||||||
|
with this null model~\cite{adler_persistent_2010}. This would
|
||||||
|
effectively define a metric space of persistence diagrams. It is even
|
||||||
|
possible to define some statistical summaries (means, medians,
|
||||||
|
confidence intervals) on these
|
||||||
|
spaces~\cite{turner_frechet_2014,munch_probabilistic_2015}.
|
||||||
|
|
||||||
|
The issue with this approach is that metric spaces do not offer enough
|
||||||
|
algebraic structure to be amenable to most machine learning
|
||||||
|
techniques. One of the most recent development in the study of
|
||||||
|
topological summaries has been to find mappings between the space of
|
||||||
|
persistence diagrams and Banach spaces.
|
||||||
|
|
||||||
|
\section{Vectorization methods}%
|
||||||
|
\label{sec:vect-meth}
|
||||||
|
|
||||||
|
\subsection{Persistence landscapes}
|
||||||
|
|
||||||
|
\subsection{Persistence images}
|
||||||
|
|
||||||
|
\subsection{Tropical and arctic semirings}
|
||||||
|
|
||||||
|
\section{Kernel-based methods}%
|
||||||
|
\label{sec:kernel-based-methods}
|
||||||
|
|
||||||
|
\subsection{Persistent scale-space kernel}
|
||||||
|
|
||||||
|
\subsection{Persistence weighted gaussian kernel}
|
||||||
|
|
||||||
|
\subsection{Sliced Wasserstein kernel}
|
||||||
|
|
||||||
|
\section{Comparison}%
|
||||||
|
\label{sec:comparison}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\backmatter%
|
\backmatter%
|
||||||
|
|
||||||
\nocite{*}
|
% \nocite{*}
|
||||||
\bibliographystyle{plain}
|
\printbibliography%
|
||||||
\bibliography{}%
|
|
||||||
\label{cha:bibliography}
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
||||||
|
|
|
@ -33,7 +33,7 @@
|
||||||
\usepackage{tikz}
|
\usepackage{tikz}
|
||||||
\usetikzlibrary{patterns,backgrounds,positioning}
|
\usetikzlibrary{patterns,backgrounds,positioning}
|
||||||
|
|
||||||
\usepackage{biblatex}
|
\usepackage[style=numeric-comp]{biblatex}
|
||||||
\bibliography{TDA,temporalgraphs}
|
\bibliography{TDA,temporalgraphs}
|
||||||
|
|
||||||
\usepackage{pdfpages}
|
\usepackage{pdfpages}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue