Dissertation: PH for ML

This commit is contained in:
Dimitri Lozeve 2018-07-30 14:14:43 +01:00
parent 141309f6f2
commit cc8fc60a1b
4 changed files with 66 additions and 5 deletions

View file

@ -806,4 +806,17 @@ novel application of the discriminatory power of {PIs}.},
date = {2017-07-17},
langid = {english},
file = {arXiv\:1706.03358 PDF:/home/dimitri/Zotero/storage/NWMEA95P/Carrière et al. - 2017 - Sliced Wasserstein Kernel for Persistence Diagrams.pdf:application/pdf;Full Text PDF:/home/dimitri/Zotero/storage/7FZZJDKP/Carrière et al. - 2017 - Sliced Wasserstein Kernel for Persistence Diagrams.pdf:application/pdf;Snapshot:/home/dimitri/Zotero/storage/VDXI2J8D/carriere17a.html:text/html}
}
@book{adler_persistent_2010,
title = {Persistent homology for random fields and complexes},
isbn = {978-0-940600-79-9},
url = {https://projecteuclid.org/euclid.imsc/1288099016},
abstract = {Project Euclid - mathematics and statistics online},
publisher = {Institute of Mathematical Statistics},
author = {Adler, Robert J. and Bobrowski, Omer and Borman, Matthew S. and Subag, Eliran and Weinberger, Shmuel},
urldate = {2018-07-30},
date = {2010},
doi = {10.1214/10-IMSCOLL609},
file = {Full Text PDF:/home/dimitri/Zotero/storage/N8UHEK9G/Adler et al. - 2010 - Persistent homology for random fields and complexe.pdf:application/pdf;Snapshot:/home/dimitri/Zotero/storage/29PXN97Q/1288099016.html:text/html}
}

Binary file not shown.

View file

@ -530,12 +530,60 @@ in the evolution of the network over time.
\label{sec:zigzag-persistence}
\chapter{Persistent Homology for Machine Learning applications}%
\label{cha:pers-homol-mach}
The output of persistent homology is not directly usable by most
statistical methods. Barcodes and persistence diagrams, being a
multiset of points in $\overline{\mathbb{R}}^2$, are not elements of a
metric space in which we could perform statistical computations.
The distances between persistence diagrams defined
in~\autoref{sec:topol-summ} allow us to compare different
outputs. From a statistical perspective, it is possible to use a
generative model of simplicial complexes, and use a distance between
persistence diagrams to measure the similarity of our observations
with this null model~\cite{adler_persistent_2010}. This would
effectively define a metric space of persistence diagrams. It is even
possible to define some statistical summaries (means, medians,
confidence intervals) on these
spaces~\cite{turner_frechet_2014,munch_probabilistic_2015}.
The issue with this approach is that metric spaces do not offer enough
algebraic structure to be amenable to most machine learning
techniques. One of the most recent development in the study of
topological summaries has been to find mappings between the space of
persistence diagrams and Banach spaces.
\section{Vectorization methods}%
\label{sec:vect-meth}
\subsection{Persistence landscapes}
\subsection{Persistence images}
\subsection{Tropical and arctic semirings}
\section{Kernel-based methods}%
\label{sec:kernel-based-methods}
\subsection{Persistent scale-space kernel}
\subsection{Persistence weighted gaussian kernel}
\subsection{Sliced Wasserstein kernel}
\section{Comparison}%
\label{sec:comparison}
\backmatter%
\nocite{*}
\bibliographystyle{plain}
\bibliography{}%
\label{cha:bibliography}
% \nocite{*}
\printbibliography%
\end{document}

View file

@ -33,7 +33,7 @@
\usepackage{tikz}
\usetikzlibrary{patterns,backgrounds,positioning}
\usepackage{biblatex}
\usepackage[style=numeric-comp]{biblatex}
\bibliography{TDA,temporalgraphs}
\usepackage{pdfpages}