diff --git a/dissertation/dissertation.tex b/dissertation/dissertation.tex index e37f563..abdafac 100644 --- a/dissertation/dissertation.tex +++ b/dissertation/dissertation.tex @@ -122,6 +122,54 @@ respectively). \emph{faces} of $\sigma$. \end{defn} +\begin{figure}[ht] + \centering + \begin{subfigure}[b]{.3\linewidth} + \centering + \begin{tikzpicture} + \tikzstyle{point}=[circle,thick,draw=black,fill=blue!30,% + inner sep=0pt,minimum size=15pt] + \node (a)[point] at (0,0) {a}; + \end{tikzpicture} + \caption{Single vertex} + \end{subfigure}% + % + \begin{subfigure}[b]{.3\linewidth} + \centering + \begin{tikzpicture} + \tikzstyle{point}=[circle,thick,draw=black,fill=blue!30,% + inner sep=0pt,minimum size=15pt] + \node (a)[point] at (0,0) {a}; + \node (b)[point] at (1.4,2) {b}; + + \begin{scope}[on background layer] + \draw[fill=blue!15] (a.center) -- (b.center) -- cycle; + \end{scope} + \end{tikzpicture} + \caption{Segment} + \end{subfigure}% + % + \begin{subfigure}[b]{.3\linewidth} + \centering + \begin{tikzpicture} + \tikzstyle{point}=[circle,thick,draw=black,fill=blue!30,% + inner sep=0pt,minimum size=15pt] + \node (a)[point] at (0,0) {a}; + \node (b)[point] at (1.4,2) {b}; + \node (c)[point] at (2.8,0) {c}; + + \begin{scope}[on background layer] + \draw[fill=blue!15] (a.center) -- (b.center) -- (c.center) -- cycle; + \end{scope} + \end{tikzpicture} + \caption{Triangle} + \end{subfigure}% + % + \caption{Examples of simplices}% + \label{fig:simplex} +\end{figure} + + We then need a way to combine these basic building blocks meaningfully so that the resulting object can adequately reflect the topological structure of the metric space. @@ -138,6 +186,48 @@ structure of the metric space. %% TODO figure with examples of simplicial complexes +\begin{figure}[ht] + \centering + \begin{tikzpicture} + \tikzstyle{point}=[circle,thick,draw=black,fill=blue!30,% + inner sep=0pt,minimum size=10pt] + \node (a)[point] {}; + \node (b)[point,above right=1.4cm and 1cm of a] {}; + \node (c)[point,right=2cm of a] {}; + \node (d)[point,above right=.4cm and 2cm of b] {}; + \node (e)[point,above right=.4cm and 2cm of c] {}; + \node (f)[point,below right=.7cm and 1.3cm of c] {}; + \node (g)[point,right=2cm of d] {}; + \node (h)[point,below right=.4cm and 1.5cm of e] {}; + + \begin{scope}[on background layer] + \draw[fill=blue!15] (a.center) -- (b.center) -- (c.center) -- cycle; + \draw (b) -- (d) -- (g); + \draw (c.center) -- (e.center) -- (f.center) -- cycle; + \draw (d) -- (e) -- (h); + \end{scope} + + \node (1)[point,right=2cm of g] {}; + \node (2)[point,above right=.5cm and 1cm of 1] {}; + \node (3)[point,below right=.5cm and 1cm of 2] {}; + \node (4)[point,below left=1cm and .3cm of 3] {}; + \node (5)[point,below right=1cm and .3cm of 1] {}; + \node (6)[point,below left=1cm and .1cm of 5] {}; + \node (7)[point,below right=1cm and .1cm of 4] {}; + \node (8)[point,below right=.7cm and .7cm of 6] {}; + + \begin{scope}[on background layer] + \draw[fill=green!15] (1.center) -- (2.center) -- (3.center) -- (4.center) -- (5.center) -- cycle; + \draw (1) -- (4) -- (2) -- (5) -- (3) -- (1); + \draw[fill=blue!15] (6.center) -- (7.center) -- (8.center) -- cycle; + \draw (5) -- (6) -- (4) -- (7); + \end{scope} + \end{tikzpicture} + \caption{Example of a simplicial complex, with two connected + components, two 3-simplices, and one 5-simplex.}% + \label{fig:simplical-complex} +\end{figure} + The notion of simplicial complex is closely related to that of a hypergraph. The important distinction lies in the fact that a subset of a hyperedge is not necessarily a hyperedge itself. diff --git a/dissertation/preamble.tex b/dissertation/preamble.tex index 2054723..042162c 100644 --- a/dissertation/preamble.tex +++ b/dissertation/preamble.tex @@ -31,6 +31,10 @@ \newtheorem*{note}{Note} \newtheorem*{notation}{Notation} +\usepackage{tikz-network} +\usepackage{tikz} +\usetikzlibrary{patterns,backgrounds,positioning} + \usepackage{pdfpages} \usepackage{microtype}