Bitcoin network example, with igraph

This commit is contained in:
Dimitri Lozeve 2018-03-03 12:58:34 +00:00
parent 26b7ce87a5
commit 033d9d76e3
3 changed files with 402 additions and 7 deletions

View file

@ -13,7 +13,8 @@ matplotlib = "*"
jupyter = "*"
networkx = "*"
jupyterlab = "*"
altair = "*"
python-igraph = {git = "https://github.com/igraph/python-igraph.git", ref="8864b46849b031a3013764d03e167222963c0f5d"}
[dev-packages]

29
Pipfile.lock generated
View file

@ -1,7 +1,7 @@
{
"_meta": {
"hash": {
"sha256": "433fe4f585fb489189f98fca98bf4cb140597c32e8a662b212bc3af15471c865"
"sha256": "3a67e54d8190ab442ef984eb4e0e4a28809e7131b1f41e6d865996b8c5926dff"
},
"host-environment-markers": {
"implementation_name": "cpython",
@ -9,9 +9,9 @@
"os_name": "posix",
"platform_machine": "x86_64",
"platform_python_implementation": "CPython",
"platform_release": "4.15.3-2-ARCH",
"platform_release": "4.15.6-1-ARCH",
"platform_system": "Linux",
"platform_version": "#1 SMP PREEMPT Thu Feb 15 00:13:49 UTC 2018",
"platform_version": "#1 SMP PREEMPT Sun Feb 25 12:53:23 UTC 2018",
"python_full_version": "3.6.4",
"python_version": "3.6",
"sys_platform": "linux"
@ -27,6 +27,12 @@
]
},
"default": {
"altair": {
"hashes": [
"sha256:c1303f77f1ba4d632f2958c83c0f457b2b969860b1ac9adfb872aefa1780baa7"
],
"version": "==1.2.1"
},
"bleach": {
"hashes": [
"sha256:cf567e7ed30ea5e05b31231d88ae170af1c5544758b9d7bebbc20590b7c30b1e",
@ -144,10 +150,10 @@
},
"jupyterlab": {
"hashes": [
"sha256:c5a140a76f5ed1c88e977372187c267817341a8dfc862807a45c4c72c6ab51bb",
"sha256:842914beca4d8a6fe62c45157b7f8fa44aaa570efdba7b19dab79605a51612e5"
"sha256:543f2f9a7f393d545ecf5a95a2290c97b88d78974a44b299b2bd387dc08b738e",
"sha256:96e01d709eda1e77eb4181b3109c8e0cf7ad7a69d0dfa2c42c94b5bcd65d220f"
],
"version": "==0.31.8"
"version": "==0.31.10"
},
"jupyterlab-launcher": {
"hashes": [
@ -308,6 +314,7 @@
"sha256:e8c43b5eee76b2083a9badde89fd1bbce6c8942d1045146e100b7b5e014f4f1a",
"sha256:e64193f0047ad603b71f202332ab5527c5e52aa7c8b609704fc28c0dc20c4365"
],
"markers": "os_name != 'nt'",
"version": "==0.5.2"
},
"pygments": {
@ -336,6 +343,10 @@
],
"version": "==2.6.1"
},
"python-igraph": {
"git": "https://github.com/igraph/python-igraph.git",
"ref": "8864b46849b031a3013764d03e167222963c0f5d"
},
"pytz": {
"hashes": [
"sha256:ed6509d9af298b7995d69a440e2822288f2eca1681b8cce37673dbb10091e5fe",
@ -436,6 +447,12 @@
],
"version": "==4.3.2"
},
"vega": {
"hashes": [
"sha256:b531938b7623c3804fc06a008bcf7559d06e04b485067840dd7181699d126922"
],
"version": "==0.4.4"
},
"wcwidth": {
"hashes": [
"sha256:f4ebe71925af7b40a864553f761ed559b43544f8f71746c2d756c7fe788ade7c",

377
bitcoin.ipynb Normal file
View file

@ -0,0 +1,377 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"import igraph as ig"
]
},
{
"cell_type": "markdown",
"metadata": {
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"source": [
"# Load the graph"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"G = ig.read(\"data/bitcoin/bitcoinotc.graphml\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"G.to_undirected(combine_edges=\"first\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"source": [
"# Clique distribution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"G.clique_number()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"cl = G.cliques()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"plt.hist(list(map(len,cl)), bins=10);"
]
},
{
"cell_type": "markdown",
"metadata": {
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"source": [
"# Rescale the timestamps"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"edges = pd.DataFrame([e.attributes().values() for e in G.es])\n",
"edges.columns = G.es.attribute_names()\n",
"edges.drop([\"Edge Label\", \"id\"], axis=1, inplace=True)\n",
"edges.describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"timerange = edges.time.max() - edges.time.min()\n",
"timemin = edges.time.min()\n",
"G.es[\"time\"] = (G.es[\"time\"] - timemin) / timerange"
]
},
{
"cell_type": "markdown",
"metadata": {
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"source": [
"# Temporal subgraphs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"G.subgraph_edges(G.es(lambda e: e[\"time\"] < 0.1)).summary()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"def temporal_subgraph(graph, tmin=None, tmax=None, delete_vertices=True):\n",
" if tmin==None:\n",
" tmin = min(graph.es[\"time\"])\n",
" if tmax==None:\n",
" tmax = max(graph.es[\"time\"])\n",
" return G.subgraph_edges(G.es(lambda e: (e[\"time\"] > tmin) & (e[\"time\"] < tmax)), delete_vertices=delete_vertices)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"temporal_subgraph(G, tmin=0.1, tmax=0.3).summary()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"ti = 0\n",
"dt = 0.01\n",
"subg = temporal_subgraph(G, tmin=ti, tmax=ti+dt)\n",
"layout = subg.layout(\"kk\")\n",
"ig.plot(subg, layout=layout)"
]
},
{
"cell_type": "markdown",
"metadata": {
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"source": [
"# Export multilayer graph"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"dt = 0.05\n",
"layout = []\n",
"subg = []\n",
"for i in range(2):\n",
" subg.append(temporal_subgraph(G, tmin=i*dt, tmax=i*dt+dt))\n",
" layout.append(subg[i].layout(\"kk\").coords)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": [
"vs_df = pd.DataFrame()\n",
"es_df = pd.DataFrame()\n",
"for i in range(2):\n",
" subg_vs = pd.DataFrame(layout[i])\n",
" subg_vs.columns = [\"x\",\"y\"]\n",
" subg_vs[\"id\"] = np.arange(len(layout[i]))\n",
" subg_vs[\"layer\"] = i+1\n",
" # subg_vs.to_csv(\"vs1.csv\", index=False)\n",
" vs_df = pd.concat([vs_df,subg_vs])\n",
" subg_es = pd.DataFrame([[e.source,e.target] for e in subg[i].es])\n",
" subg_es.columns = [\"u\",\"v\"]\n",
" # subg_es.to_csv(\"es1.csv\", index=False)\n",
" es_df = pd.concat([es_df,subg_es])\n",
" \n",
"vs_df.to_csv(\"vs.csv\", index=False)\n",
"es_df.to_csv(\"es.csv\", index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"autoscroll": false,
"collapsed": false,
"ein.tags": "worksheet-0",
"slideshow": {
"slide_type": "-"
}
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
},
"name": "bitcoin.ipynb"
},
"nbformat": 4,
"nbformat_minor": 2
}