module Main where import Lib import Linear.Affine import Linear.V3 import System.Random import Control.Monad (replicateM) import Graphics.Gloss hiding (Point) -------------------------------------------------------------------------------- -- Random body generation -------------------------------------------------------------------------------- randomBody :: IO Body randomBody = do r <- randomIO :: IO Double m <- randomIO :: IO Double x <- randomIO :: IO Double y <- randomIO :: IO Double z <- randomIO :: IO Double vx <- randomIO :: IO Double vy <- randomIO :: IO Double vz <- randomIO :: IO Double name <- replicateM 20 $ randomRIO ('a', 'z') -- Make radius proportional to mass for visualization let radius = 20 * m -- Scale mass let mass = 1e3 * m -- Scale position and speed let posx = 1e3 * (2*x - 1) let posy = 1e3 * (2*y - 1) let speedx = 5e-5 * vx let speedy = 5e-5 * vy return $ Body name radius mass (P $ V3 posx posy 0) (V3 speedx speedy 0) -------------------------------------------------------------------------------- -- CSV export -------------------------------------------------------------------------------- -- | Show a Vector as CSV csvFromVector :: V3 Double -> String csvFromVector (V3 x y z) = show x ++ "," ++ show y ++ "," ++ show z -- | show a Point as CSV csvFromPoint :: Point V3 Double -> String csvFromPoint (P v) = csvFromVector v -- | Show a Body as CSV csvFromBody :: Double -> Body -> String csvFromBody dt b = show dt ++ "," ++ csvFromPoint (_bodyPosition b) ++ "," ++ csvFromVector (_bodySpeed b) ++ "\n" -- | Show a list of bodies as CSV csvFromBodies :: Double -> [Body] -> String csvFromBodies dt bs = concat $ map (csvFromBody dt) bs -- | Compute all the steps of the simulation steps :: Double -- ^ The time step -> Double -- ^ The Barnes-Hut threshold theta -> [Body] -- ^ The initial state (list of bodies) -> [(Double, [Body])] -- ^ List of successive states with the -- corresponding time steps dt theta b = zip (iterate (dt +) 0) (iterate (updateAll dt theta) b) -- | Show all the steps as CSV csvFromInit :: Int -- ^ The number of time steps to keep -> Double -- ^ The time step -> Double -- ^ The Barnes-Hut threshold theta -> [Body] -- ^ The initial state (list of bodies) -> String -- ^ CSV data csvFromInit n dt theta b = concat $ map (uncurry csvFromBodies) (take n $ steps dt theta b) -------------------------------------------------------------------------------- -- Gloss -------------------------------------------------------------------------------- width, height, offset :: Int width = 1000 height = 750 offset = 100 window :: Display window = InWindow "Orbit" (width, height) (offset, offset) displayBody :: Body -> Picture displayBody b = translate (realToFrac x) (realToFrac y) $ circle (realToFrac (_bodyRadius b)) where P (V3 x y _) = _bodyPosition b displayBodies :: [Body] -> Picture displayBodies = color white . Pictures . map displayBody drawing :: Picture drawing = color white $ circle 80 main :: IO () main = do bodies <- replicateM 300 randomBody simulate window black 25 bodies displayBodies (\_ dt bs -> updateAll (realToFrac dt*1e6) 0.5 bs)