103 lines
4.6 KiB
HTML
103 lines
4.6 KiB
HTML
<!doctype html>
|
||
<html lang="en">
|
||
<head>
|
||
<meta charset="utf-8">
|
||
<meta http-equiv="x-ua-compatible" content="ie=edge">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=yes">
|
||
<meta name="description" content="Dimitri Lozeve's blog: Skills in Statistics, Data Science and Machine Learning">
|
||
|
||
<title>Dimitri Lozeve - Skills in Statistics, Data Science and Machine Learning</title>
|
||
<link rel="stylesheet" href="./css/tufte.css" />
|
||
<link rel="stylesheet" href="./css/pandoc.css" />
|
||
<link rel="stylesheet" href="./css/default.css" />
|
||
<link rel="stylesheet" href="./css/syntax.css" />
|
||
|
||
<!-- RSS feed -->
|
||
<link rel="alternate" type="application/rss+xml" title="Dimitri Lozeve's blog" href="./rss.xml" />
|
||
|
||
<!-- MathJax -->
|
||
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
|
||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||
</head>
|
||
<body>
|
||
<article>
|
||
<header>
|
||
<nav>
|
||
<a href="./">Home</a>
|
||
<a href="./archive.html">Posts</a>
|
||
<a href="./projects.html">Projects</a>
|
||
<a href="./contact.html">Contact</a>
|
||
</nav>
|
||
|
||
|
||
<h1 class="title">Skills in Statistics, Data Science and Machine Learning</h1>
|
||
|
||
|
||
|
||
|
||
|
||
</header>
|
||
|
||
<h2 id="statistics">Statistics</h2>
|
||
<ul>
|
||
<li>Knowledge of Linear Models and Generalised Linear Models (including logistic regression), both in theory and in applications</li>
|
||
<li>Classical Statistical inference (maximum likelihood estimation, method of moments, minimal variance unbiased estimators) and testing (including goodness of fit)</li>
|
||
<li>Nonparametric statistics</li>
|
||
<li>Bootstrap methods, hidden Markov models</li>
|
||
<li>Knowledge of Bayesian Analysis techniques for inference and testing: Markov Chain Monte Carlo, Approximate Bayesian Computation, Reversible Jump MCMC</li>
|
||
<li>Good knowledge of R for statistical modelling and plotting</li>
|
||
</ul>
|
||
<h2 id="data-analysis">Data Analysis</h2>
|
||
<ul>
|
||
<li>Experience with large datasets, for classification and regression</li>
|
||
<li>Descriptive statistics, plotting (with dimensionality reduction)</li>
|
||
<li>Data cleaning and formatting</li>
|
||
<li>Experience with unstructured data coming directly from embedded sensors to a microcontroller</li>
|
||
<li>Experience with large graph and network data</li>
|
||
<li>Experience with live data from APIs</li>
|
||
<li>Data analysis with Pandas, xarray (Python) and the tidyverse (R)</li>
|
||
<li>Basic knowledge of SQL</li>
|
||
</ul>
|
||
<h2 id="graph-and-network-analysis">Graph and Network Analysis</h2>
|
||
<ul>
|
||
<li>Research project on community detection and graph clustering (theory and implementation)</li>
|
||
<li>Research project on Topological Data Analysis for time-dependent networks</li>
|
||
<li>Random graph models</li>
|
||
<li>Estimation in networks (Stein’s method for Normal and Poisson estimation)</li>
|
||
<li>Network Analysis with NetworkX, graph-tool (Python) and igraph (R and Python)</li>
|
||
</ul>
|
||
<h2 id="time-series-analysis">Time Series Analysis</h2>
|
||
<ul>
|
||
<li>experience in analysing inertial sensors data (accelerometer, gyroscope, magnetometer), both in real-time and in post-processing</li>
|
||
<li>use of statistical method for step detection, gait detection, and trajectory reconstruction</li>
|
||
<li>Kalman filtering, Fourier and wavelet analysis</li>
|
||
<li>Machine Learning methods applied to time series (decision trees, SVMs and Recurrent Neural Networks in particular)</li>
|
||
<li>Experience with signal processing functions in Numpy and Scipy (Python)</li>
|
||
</ul>
|
||
<h2 id="machine-learning">Machine Learning</h2>
|
||
<ul>
|
||
<li>Experience in Dimensionality Reduction (PCA, MDS, Kernel PCA, Isomap, spectral clustering)</li>
|
||
<li>Experience with the most common methods and techniques</li>
|
||
<li>Random forests, SVMs, Neural Networks (including CNNs and RNNs), both theoretical knowledge and practical experience</li>
|
||
<li>Bagging and boosting estimators</li>
|
||
<li>Cross-validation</li>
|
||
<li>Kernel methods, reproducing kernel Hilbert spaces, collaborative filtering, variational Bayes, Gaussian processes</li>
|
||
<li>Machine Learning libraries: Scikit-Learn, PyTorch, TensorFlow, Keras</li>
|
||
</ul>
|
||
<h2 id="simulation">Simulation</h2>
|
||
<ul>
|
||
<li>Inversion, Transformation, Rejection, and Importance sampling</li>
|
||
<li>Gibbs sampling</li>
|
||
<li>Metropolis-Hastings</li>
|
||
<li>Reversible jump MCMC</li>
|
||
<li>Hidden Markov Models and Sequential Monte Carlo Methods</li>
|
||
</ul>
|
||
|
||
</article>
|
||
|
||
<footer>
|
||
Site proudly generated by
|
||
<a href="http://jaspervdj.be/hakyll">Hakyll</a>
|
||
</footer>
|
||
</body>
|
||
</html>
|