blog/_site/posts/ginibre-ensemble.html
2020-08-30 23:41:53 +02:00

77 lines
5.6 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="x-ua-compatible" content="ie=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=yes">
<meta name="description" content="Dimitri Lozeve's blog: Random matrices from the Ginibre ensemble">
<title>Dimitri Lozeve - Random matrices from the Ginibre ensemble</title>
<link rel="stylesheet" href="../css/tufte.css" />
<link rel="stylesheet" href="../css/pandoc.css" />
<link rel="stylesheet" href="../css/default.css" />
<link rel="stylesheet" href="../css/syntax.css" />
<!-- RSS feed -->
<link rel="alternate" type="application/rss+xml" title="Dimitri Lozeve's blog" href="../rss.xml" />
<!-- MathJax -->
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<article>
<header>
<nav>
<a href="../">Home</a>
<a href="../archive.html">Posts</a>
<a href="../projects.html">Projects</a>
<a href="../contact.html">Contact</a>
</nav>
<h1 class="title">Random matrices from the Ginibre ensemble</h1>
<p class="byline">March 20, 2019</p>
</header>
<section>
<h3 id="ginibre-ensemble-and-its-properties">Ginibre ensemble and its properties</h3>
<p>The <em>Ginibre ensemble</em> is a set of random matrices with the entries chosen independently. Each entry of a <span class="math inline">\(n \times n\)</span> matrix is a complex number, with both the real and imaginary part sampled from a normal distribution of mean zero and variance <span class="math inline">\(1/2n\)</span>.</p>
<p>Random matrices distributions are very complex and are a very active subject of research. I stumbled on this example while reading an article in <em>Notices of the AMS</em> by Brian C. Hall <a href="#ref-1">(1)</a>.</p>
<p>Now what is interesting about these random matrices is the distribution of their <span class="math inline">\(n\)</span> eigenvalues in the complex plane.</p>
<p>The <a href="https://en.wikipedia.org/wiki/Circular_law">circular law</a> (first established by Jean Ginibre in 1965 <a href="#ref-2">(2)</a>) states that when <span class="math inline">\(n\)</span> is large, with high probability, almost all the eigenvalues lie in the unit disk. Moreover, they tend to be nearly uniformly distributed there.</p>
<p>I find this mildly fascinating that such a straightforward definition of a random matrix can exhibit such non-random properties in their spectrum.</p>
<h3 id="simulation">Simulation</h3>
<p>I ran a quick simulation, thanks to <a href="https://julialang.org/">Julia</a>s great ecosystem for linear algebra and statistical distributions:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode julia"><code class="sourceCode julia"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true"></a><span class="kw">using</span> LinearAlgebra</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true"></a><span class="kw">using</span> UnicodePlots</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true"></a></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true"></a><span class="kw">function</span> ginibre(n)</span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true"></a> <span class="kw">return</span> randn((n<span class="op">,</span> n)) <span class="op">*</span> sqrt(<span class="fl">1</span><span class="op">/</span><span class="fl">2</span>n) <span class="op">+</span> <span class="cn">im</span> <span class="op">*</span> randn((n<span class="op">,</span> n)) <span class="op">*</span> sqrt(<span class="fl">1</span><span class="op">/</span><span class="fl">2</span>n)</span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true"></a><span class="kw">end</span></span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true"></a></span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true"></a>v <span class="op">=</span> eigvals(ginibre(<span class="fl">2000</span>))</span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true"></a></span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true"></a>scatterplot(real(v)<span class="op">,</span> imag(v)<span class="op">,</span> xlim<span class="op">=</span>[<span class="op">-</span><span class="fl">1.5</span><span class="op">,</span><span class="fl">1.5</span>]<span class="op">,</span> ylim<span class="op">=</span>[<span class="op">-</span><span class="fl">1.5</span><span class="op">,</span><span class="fl">1.5</span>])</span></code></pre></div>
<p>I like using <code>UnicodePlots</code> for this kind of quick-and-dirty plots, directly in the terminal. Here is the output:</p>
<p><img src="../images/ginibre.png" /></p>
<h3 id="references">References</h3>
<ol>
<li><span id="ref-1"></span>Hall, Brian C. 2019. “Eigenvalues of Random Matrices in the General Linear Group in the Large-<span class="math inline">\(N\)</span> Limit.” <em>Notices of the American Mathematical Society</em> 66, no. 4 (Spring): 568-569. <a href="https://www.ams.org/journals/notices/201904/201904FullIssue.pdf">https://www.ams.org/journals/notices/201904/201904FullIssue.pdf</a></li>
<li><span id="ref-2"></span>Ginibre, Jean. “Statistical ensembles of complex, quaternion, and real matrices.” Journal of Mathematical Physics 6.3 (1965): 440-449. <a href="https://doi.org/10.1063/1.1704292">https://doi.org/10.1063/1.1704292</a></li>
</ol>
</section>
</article>
<footer>
Site proudly generated by
<a href="http://jaspervdj.be/hakyll">Hakyll</a>
</footer>
</body>
</html>