blog/_site/skills.html

97 lines
4.8 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="x-ua-compatible" content="ie=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Dimitri Lozeve - Skills in Statistics, Data Science and Machine Learning</title>
<link rel="stylesheet" href="./css/default.css" />
<link rel="stylesheet" href="./css/syntax.css" />
<!-- KaTeX CSS styles -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.0/dist/katex.min.css" integrity="sha384-BdGj8xC2eZkQaxoQ8nSLefg4AV4/AwB3Fj+8SUSo7pnKP6Eoy18liIKTPn9oBYNG" crossorigin="anonymous">
<!-- The loading of KaTeX is deferred to speed up page rendering -->
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.0/dist/katex.min.js" integrity="sha384-JiKN5O8x9Hhs/UE5cT5AAJqieYlOZbGT3CHws/y97o3ty4R7/O5poG9F3JoiOYw1" crossorigin="anonymous"></script>
<!-- To automatically render math in text elements, include the auto-render extension: -->
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.0/dist/contrib/auto-render.min.js" integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous" onload="renderMathInElement(document.body);"></script>
</head>
<body>
<header>
<div class="logo">
<a href="./">Dimitri Lozeve</a>
</div>
<nav>
<a href="./">Home</a>
<a href="./projects.html">Projects</a>
<a href="./archive.html">Archive</a>
<a href="./contact.html">Contact</a>
</nav>
</header>
<main role="main">
<h1>Skills in Statistics, Data Science and Machine Learning</h1>
<h1 id="statistics">Statistics</h1>
<ul>
<li>Knowledge of Linear Models and Generalised Linear Models (including logistic regression), both in theory and in applications</li>
<li>Classical Statistical inference (maximum likelihood estimation, method of moments, minimal variance unbiased estimators) and testing (including goodness of fit)</li>
<li>Nonparametric statistics</li>
<li>Bootstrap methods, hidden Markov models</li>
<li>Knowledge of Bayesian Analysis techniques for inference and testing: Markov Chain Monte Carlo, Approximate Bayesian Computation, Reversible Jump MCMC</li>
<li>Good knowledge of R for statistical modelling and plotting</li>
</ul>
<h1 id="data-analysis">Data Analysis</h1>
<ul>
<li>Experience with large datasets, for classification and regression</li>
<li>Descriptive statistics, plotting (with dimensionality reduction)</li>
<li>Data cleaning and formatting</li>
<li>Experience with unstructured data coming directly from embedded sensors to a microcontroller</li>
<li>Experience with large graph and network data</li>
<li>Experience with live data from APIs</li>
<li>Data analysis with Pandas, xarray (Python) and the tidyverse (R)</li>
<li>Basic knowledge of SQL</li>
</ul>
<h1 id="graph-and-network-analysis">Graph and Network Analysis</h1>
<ul>
<li>Research project on community detection and graph clustering (theory and implementation)</li>
<li>Research project on Topological Data Analysis for time-dependent networks</li>
<li>Random graph models</li>
<li>Estimation in networks (Steins method for Normal and Poisson estimation)</li>
<li>Network Analysis with NetworkX, graph-tool (Python) and igraph (R and Python)</li>
</ul>
<h1 id="time-series-analysis">Time Series Analysis</h1>
<ul>
<li>experience in analysing inertial sensors data (accelerometer, gyroscope, magnetometer), both in real-time and in post-processing</li>
<li>use of statistical method for step detection, gait detection, and trajectory reconstruction</li>
<li>Kalman filtering, Fourier and wavelet analysis</li>
<li>Machine Learning methods applied to time series (decision trees, SVMs and Recurrent Neural Networks in particular)</li>
<li>Experience with signal processing functions in Numpy and Scipy (Python)</li>
</ul>
<h1 id="machine-learning">Machine Learning</h1>
<ul>
<li>Experience in Dimensionality Reduction (PCA, MDS, Kernel PCA, Isomap, spectral clustering)</li>
<li>Experience with the most common methods and techniques</li>
<li>Random forests, SVMs, Neural Networks (including CNNs and RNNs), both theoretical knowledge and practical experience</li>
<li>Bagging and boosting estimators</li>
<li>Cross-validation</li>
<li>Kernel methods, reproducing kernel Hilbert spaces, collaborative filtering, variational Bayes, Gaussian processes</li>
<li>Machine Learning libraries: Scikit-Learn, PyTorch, TensorFlow, Keras</li>
</ul>
<h1 id="simulation">Simulation</h1>
<ul>
<li>Inversion, Transformation, Rejection, and Importance sampling</li>
<li>Gibbs sampling</li>
<li>Metropolis-Hastings</li>
<li>Reversible jump MCMC</li>
<li>Hidden Markov Models and Sequential Monte Carlo Methods</li>
</ul>
</main>
<footer>
Site proudly generated by
<a href="http://jaspervdj.be/hakyll">Hakyll</a>
</footer>
</body>
</html>