Dyalog APL Problem Solving Competition 2020 — Phase II
Annotated Solutions
Annotated Solutions
After Phase I, here are my solutions to Phase II problems. The full code is included in the post, but everything is also available on GitHub.
A PDF of the problems descriptions is available on the competition website, or directly from my GitHub repo.
The submission guidelines gave a template where everything is defined in a Contest2020.Problems
Namespace. I kept the default values for ⎕IO
and ⎕ML
because the problems were not particularly easier with ⎕IO←0
.
This post is still a work in progress! I will try to write explanations for every problem below.
∇ score←dd DiveScore scores
:If 7=≢scores
scores←scores[¯2↓2↓⍋scores]
:ElseIf 5=≢scores
scores←scores[¯1↓1↓⍋scores]
:Else
scores←scores
:EndIf
score←2(⍎⍕)dd×+/scores
∇
∇ steps←{p}Steps fromTo;segments;width
width←|-/fromTo
:If 0=⎕NC'p' ⍝ No left argument: same as Problem 5 of Phase I
segments←0,⍳width
:ElseIf p<0 ⍝ -⌊p is the number of equally-sized steps to take
segments←(-⌊p){0,⍵×⍺÷⍨⍳⍺}width
:ElseIf p>0 ⍝ p is the step size
segments←p{⍵⌊⍺×0,⍳⌈⍵÷⍺}width
:ElseIf p=0 ⍝ As if we took zero step
segments←0
:EndIf
⍝ Take into account the start point and the direction.
steps←fromTo{(⊃⍺)+(-×-/⍺)×⍵}segments
∇
∇ urls←PastTasks url;r;paths
r←HttpCommand.Get url
paths←('[a-zA-Z0-9_/]+\.pdf'⎕S'&')r.Data
urls←('https://www.dyalog.com/'∘,)¨paths
∇
⍝ Test if a DNA string is a reverse palindrome.
isrevp←{⍵≡⌽'TAGC'['ATCG'⍳⍵]}
⍝ Generate all subarrays (position, length) pairs, for
⍝ 4 ≤ length ≤ 12.
subarrays←{⊃,/(⍳⍵),¨¨3↓¨⍳¨12⌊1+⍵-⍳⍵}
∇ r←revp dna;positions
positions←subarrays⍴dna
⍝ Filter subarrays which are reverse palindromes.
r←↑({isrevp dna[¯1+⍵[1]+⍳⍵[2]]}¨positions)/positions
∇
⍝ First solution: ((1+⊢)⊥⊣) computes the total return
⍝ for a vector of amounts ⍺ and a vector of rates
⍝ ⍵. It is applied to every prefix subarray of amounts
⍝ and rates to get all intermediate values. However,
⍝ this has quadratic complexity.
⍝ rr←(,\⊣)((1+⊢)⊥⊣)¨(,\⊢)
⍝ Second solution: We want to be able to use the
⍝ recurrence relation (recur) and scan through the
⍝ vectors of amounts and rates, accumulating the total
⍝ value at every time step. However, APL evaluation is
⍝ right-associative, so a simple Scan
⍝ (recur\amounts,¨values) would not give the correct
⍝ result, since recur is not associative and we need
⍝ to evaluate it left-to-right. (In any case, in this
⍝ case, Scan would have quadratic complexity, so would
⍝ not bring any benefit over the previous solution.)
⍝ What we need is something akin to Haskell's scanl
⍝ function, which would evaluate left to right in O(n)
⍝ time. This is what we do here, accumulating values
⍝ from left to right. (This is inspired from
⍝ dfns.ascan, although heavily simplified.)
rr←{recur←{⍵[1]+⍺×1+⍵[2]} ⋄ 1↓⌽⊃{(⊂(⊃⍵)recur⍺),⍵}/⌽⍺,¨⍵}
∇ val←ns getval var
:If ''≡var ⍝ literal '@'
val←'@'
:ElseIf (⊂var)∊ns.⎕NL ¯2
val←⍕ns⍎var
:Else
val←'???'
:EndIf
∇
∇ text←templateFile Merge jsonFile;template;ns
template←⊃⎕NGET templateFile 1
ns←⎕JSON⊃⎕NGET jsonFile
⍝ We use a simple regex search and replace on the
⍝ template.
text←↑('@[a-zA-Z]*@'⎕R{ns getval ¯1↓1↓⍵.Match})template
∇
⍝ Left and right representations of digits. Decoding
⍝ the binary representation from decimal is more
⍝ compact than writing everything explicitly.
lrepr←⍉(7⍴2)⊤13 25 19 61 35 49 47 59 55 11
rrepr←~¨lrepr
∇ bits←WriteUPC digits;left;right
:If (11=≢digits)∧∧/digits∊0,⍳9
left←,lrepr[1+6↑digits;]
right←,rrepr[1+6↓digits,CheckDigit digits;]
bits←1 0 1,left,0 1 0 1 0,right,1 0 1
:Else
bits←¯1
:EndIf
∇
∇ digits←ReadUPC bits
:If 95≠⍴bits ⍝ incorrect number of bits
digits←¯1
:Else
⍝ Test if the barcode was scanned right-to-left.
:If 0=2|+/bits[3+⍳7]
bits←⌽bits
:EndIf
digits←({¯1+lrepr⍳⍵}¨(7/⍳6)⊆42↑3↓bits),{¯1+rrepr⍳⍵}¨(7/⍳6)⊆¯42↑¯3↓bits
:If ~∧/digits∊0,⍳9 ⍝ incorrect parity
digits←¯1
:ElseIf (⊃⌽digits)≠CheckDigit ¯1↓digits ⍝ incorrect check digit
digits←¯1
:EndIf
:EndIf
∇
∇ parts←Balance nums;subsets;partitions
⍝ This is a brute force solution, running in
⍝ exponential time. We generate all the possible
⍝ partitions, filter out those which are not
⍝ balanced, and return the first matching one. There
⍝ are more advanced approach running in
⍝ pseudo-polynomial time (based on dynamic
⍝ programming, see the "Partition problem" Wikipedia
⍝ page), but they are not warranted here, as the
⍝ input size remains fairly small.
⍝ Generate all partitions of a vector of a given
⍝ size, as binary mask vectors.
subsets←{1↓2⊥⍣¯1⍳2*⍵}
⍝ Keep only the subsets whose sum is exactly
⍝ (+/nums)÷2.
partitions←nums{((2÷⍨+/⍺)=⍺+.×⍵)/⍵}subsets⍴nums
:If 0=≢,partitions
⍝ If no partition satisfy the above
⍝ criterion, we return ⍬.
parts←⍬
:Else
⍝ Otherwise, we return the first possible
⍝ partition.
parts←nums{((⊂,(⊂~))⊃↓⍉⍵)/¨2⍴⊂⍺}partitions
:EndIf
∇
∇ weights←Weights filename;mobile;branches;mat
⍝ Put your code and comments below here
⍝ Parse the mobile input file.
mobile←↑⊃⎕NGET filename 1
branches←⍸mobile∊'┌┴┐'
⍝ TODO: Build the matrix of coefficients mat.
⍝ Solve the system of equations (arbitrarily setting
⍝ the first variable at 1 because the system is
⍝ overdetermined), then multiply the coefficients by
⍝ their least common multiple to get the smallest
⍝ integer weights.
weights←((1∘,)×(∧/÷))mat[;1]⌹1↓[2]mat
∇