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Abstract

Temporal networks are a mathematical model to represent interactions evolving
over time. As such, they have a multitude of applications, from biology to physics
to social networks. The study of dynamics on networks is an emerging field, with
many challenges in modelling and data analysis.

An important issue is to uncover meaningful temporal structure in a network. We
focus on the problem of periodicity detection in temporal networks, by partitioning
the time range of the network and clustering the resulting subnetworks.

For this, we leverage methods from the field of topological data analysis and
persistent homology. These methods have begun to be employed with static graphs
in order to provide a summary of topological features, but applications to temporal
networks have never been studied in detail.

We cluster temporal networks by computing the evolution of topological features
over time. Applying persistent homology to temporal networks and comparing
various approaches has never been done before, and we examine their performance
side-by-side with a simple clustering algorithm. Using a generative model, we show
that persistent homology is able to detect periodicity in the topological structure of a
network.

We define two types of topological features, with and without aggregating the
temporal networks, and multiple ways of embedding them in a feature space suit-
able for machine-learning applications. In particular, we examine the theoretical
guarantees and empirical performance of kernels defined on topological features.

Topological insights prove to be useful in statistical learning applications. Com-
bined with the recent advances in network science, they lead to a deeper understand-
ing of the structure of temporal networks.
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1 Introduction

1.1 Temporal networks analysis

Networks are one of the most important mathematical concepts developed in the last few centuries.
They allow the representation of interconnected data and complex systems. As such, the concept
has been applied to wide variety of problems, in biology and neuroscience, physics, computer
networks, and social science. In this context, network science has emerged as a discipline of its
own, combining ideas and challenges from multiple fields of study [51].

Time 𝑡1

Time 𝑡2

Time 𝑡3

An emerging trend in network science is the study of dynamics
on networks [30, 32, 60]. Real-world systems, such as brains or so-
cial groups, tend to evolve over time, and these changing networks
have given birth to the new field of network dynamics, where edges
can reconfigure over time. Mathematical modelling of temporal con-
nectivity patterns remain a difficult problem [5]. Recent advances
in applied mathematics have led to may concurrent representations,
multilayer networks [40] being one of the most important.

Temporal networks bring new challenges in size, shape, and
complexity of data analysis, but also new opportunities with the
development of new empirical methods and theoretical advances.
One of these advances is the development of generative models that
can be used to infer the dynamic mechanisms taking place in real-
world systems [8, 25, 58].

Moreover, network theory naturally exposes many links with
topology. The purpose of networks lies in the representation of structure, while topology is
the study of spaces and connectedness. As topological methods gain traction in data science
and statistical learning, they are also applied to more complex data representations, including
networks [33, 59, 68]. Topological features naturally complement more traditional network
statistics by focusing on mesoscale structure.

1.2 Related work

Topological data analysis (TDA) is a recent field [11]. It was originally focused on point cloud
data, with only a recent shift towards network data [33]. Various methods have been developed,
the main one being the weight-rank clique filtration (WRCF) [59]. Other examples of application
of TDA to networks using WRCF can be found in [52].

There has also been attempts to map the nodes of a network to points in a metric space. For
instance, the shortest-path distance between nodes can be used to compute pairwise distances in
the network. Note that for this method to work properly, the network has to be connected. Many
methods can be used to build a simplicial complex from a directed or undirected network [33, 38].

The main starting point for this project was the introduction of TDA for the study of temporal
networks in [61]. In this dissertation, topological methods are introduced to classify temporal
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networks randomly generated by different models. The objective of this study was to uncover the
temporal structure of a network in order to inform its partitioning into “snapshots”. Different
methods to partition a network were compared for the first time, and topological features appeared
to be relevant for distinguishing various temporal distributions.

Finally, there has been an increasing interest in using the topological structure of a dataset
as an additional source of information for a statistical learning model. This has led to the
development of topological descriptors suitable for use in various learning contexts. Previous
work on vectorizations and kernels on topological features will be useful in the analysis of the
structure of temporal networks.

1.3 Contributions

The main contributions of this work are threefold:
• We make an attempt at temporal partitioning networks and clustering the subnetworks,
with immediate application for detecting periodicity. Sliding windows and persistent
homology have been used in the context of periodicity detection before [56, 57], but never
in the context of temporal networks.

• In general, topological methods have never been thoroughly studied on temporal network
data. The work in [61] is the first to introduce the topic, but computation was limited
due to the lack of available libraries. Here, we introduce recent (from the last 2–3 years)
state-of-the-art topological methods and adapt them to temporal networks.

• Various methods to use topological features in a statistical learning context and their trade-
offs are exposed. The mathematical background and practical considerations are leveraged
to compare them in the context of machine learning.

• Finally, different topological approaches are compared. There are different ways to build a
simplicial filtration on a network, and different manners of measuring distances between
the outputs of persistent homology in the context of machine learning. These different
methods are compared here with the objective of periodicity detection in temporal networks.

2



2 Graphs and Temporal Networks

2.1 Definition and basic properties

In this section, we introduce the notion of temporal networks (or temporal graphs). This is a
complex notion, with many concurrent definitions and interpretations.

After clarifying the notations, we restate the standard definition of a non-temporal graph.

Notation. • ℕ is the set of non-negative natural numbers 0, 1, 2, …
• ℕ∗ is the set of positive integers 1, 2, …
• ℝ is the set of real numbers. ℝ+ = {𝑥 ∈ ℝ | 𝑥 ≥ 0}, and ℝ∗

+ = {𝑥 ∈ ℝ | 𝑥 > 0}.

Definition 2.1 (Graph). A graph is a couple 𝐺 = (𝑉 , 𝐸), where 𝑉 is a set of nodes (or vertices), and
𝐸 ⊆ 𝑉 × 𝑉 is a set of edges. A weighted graph is defined by 𝐺 = (𝑉 , 𝐸, 𝑤), where 𝑤 ∶ 𝐸 ↦ ℝ∗

+
is called the weight function.

We also define some basic concepts that we will need later to build simplicial complexes on
graphs.

Definition 2.2 (Clique). A clique is a set of nodes where each pair is adjacent. That is, a clique 𝐶
of a graph 𝐺 = (𝑉 , 𝐸) is a subset of 𝑉 such that for all 𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗 ⟹ (𝑖, 𝑗) ∈ 𝐸. A clique
is said to be maximal if it cannot be augmented by any node, such that the resulting set of nodes
is itself a clique.

Temporal networks can be defined in the more general framework ofmultilayer networks [40].
However, this definition is much too general for our simple applications, and we restrict ourselves
to edge-centric time-varying graphs [16]. In this model, the set of nodes is fixed, but edges can
appear or disappear at different times.

In this study, we restrict ourselves to discrete time stamps. Each interaction is taken to be
instantaneous.

Definition 2.3 (Temporal network). A temporal network is a tuple 𝐺 = (𝑉 , 𝐸, 𝒯, 𝜌), where:
• 𝑉 is a set of nodes,
• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges,
• 𝕋 is the temporal domain (often taken as ℕ or any other countable set), and 𝒯 ⊆ 𝕋 is the
lifetime of the network,

• 𝜌 ∶ 𝐸 × 𝒯 ↦ {0, 1} is the presence function, which determines whether an edge is present
in the network at each time stamp.

The available times of an edge are the set ℐ(𝑒) = {𝑡 ∈ 𝒯 ∶ 𝜌(𝑒, 𝑡) = 1}.

Temporal networks can also have weighted edges. In this case, it is possible to have constant
weights (edges can only appear or disappear over time, and always have the same weight), or
time-varying weights. In the latter case, we can set the domain of the presence function to be ℝ+
instead of {0, 1}, where by convention a 0 weight corresponds to an absent edge.

3



Definition 2.4 (Additive and dismantling temporal networks). A temporal network is said to
be additive if for all 𝑒 ∈ 𝐸 and 𝑡 ∈ 𝒯, if 𝜌(𝑒, 𝑡) = 1, then for all 𝑡′ > 𝑡, 𝜌(𝑒, 𝑡′) = 1. An additive
network can only gain edges over time.

A temporal network is said to be dismantling if for all 𝑒 ∈ 𝐸 and 𝑡 ∈ 𝒯, if 𝜌(𝑒, 𝑡) = 0, then
for all 𝑡′ > 𝑡, 𝜌(𝑒, 𝑡′) = 0. An dismantling network can only lose edges over time.

2.2 Network statistics

To analyse networks, network statistics are used. These are low-dimensional summaries of
important properties of a graph. Some of them focus on local features, while some others
concentrate on global aspects. Note that the following only applies for graphs, and cannot be
used directly on temporal networks.

These definitions are taken from the reference work by Newman [51].
The first network statistics try to determine which vertices are the most central, which are

the most “important” in the network.

Definition 2.5 (Local clustering coefficient). The local clustering coefficient of a vertex 𝑣 is defined
as

𝐶(𝑣) =
∑𝑢,𝑤∈𝒱 𝑎𝑢,𝑣𝑎𝑤,𝑣𝑎𝑢,𝑤

∑𝑢,𝑤∈𝒱,𝑢≠𝑤 𝑎𝑢,𝑣𝑎𝑤,𝑣
.

The average clustering coefficient is

𝐶 = 1
|𝒱|

∑
𝑣∈𝒱

𝐶(𝑣).

Definition 2.6 (Global clustering coefficient). The global clustering coefficient or transitivity is

𝐶 = 3 × number of triangles
number of connected triples

.

Another interesting summary is the average shortest path between vertices.

Definition 2.7 (Path). A path between two vertices 𝑣0 and 𝑣𝑛 is a sequence of vertices (𝑣0, 𝑣1, … , 𝑣𝑛)
such that every consecutive pair of vertices (𝑣𝑖, 𝑣𝑖+1) is connected by an edge.

The length of a path is the number of edges traversed along the path. The distance 𝑙(𝑢, 𝑣)
between vertices 𝑢 and 𝑣 is defined as the length of the shortest path between 𝑢 and 𝑣.

Definition 2.8 (Average shortest path length). The Average shortest path length is defined as

𝑙 = 1
|𝒱| (|𝒱| − 1)

∑
𝑢,𝑣∈𝒱,𝑢≠𝑣

𝑙(𝑢, 𝑣).

Many other centrality measures exist, the most well-known being the eigenvector centrality,
Katz centrality, and PageRank. See chapter 7 of [51] for more details.
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3 Topological Data Analysis and
Persistent Homology

3.1 Basic constructions

3.1.1 Homology

Our goal is to understand the topological structure of a metric space. For this, we can use homology,
which consists of associating a vector space 𝐻𝑖(𝑋) to a metric space 𝑋 and a dimension 𝑖. The
dimension of 𝐻𝑖(𝑋) gives us the number of 𝑖-dimensional components in 𝑋: the dimension
of 𝐻0(𝑋) is the number of path-connected components in 𝑋, the dimension of 𝐻1(𝑋) is the
number of holes in 𝑋, and the dimension of 𝐻2(𝑋) is the number of voids.

Crucially, these vector spaces are robust to continuous deformation of the underlying metric
space (they are homotopy invariant). However, computing the homology of an arbitrary metric
space can be extremely difficult. It is necessary to approximate it in a structure that would be
both combinatorial and topological in nature.

3.1.2 Simplicial complexes

To understand the topological structure of a metric space, we need a way to decompose it in
smaller pieces that, when assembled, conserve the overall organisation of the space. For this, we
use a structure called a simplicial complex, which is a kind of higher-dimensional generalization
of a graph.

The building blocks of this representation is the simplex, which is the convex hull of an
arbitrary set of points. Examples of simplices include single points, segments, triangles, and
tetrahedrons (in dimensions 0, 1, 2, and 3 respectively).

Definition 3.1 (Simplex). A 𝑘-dimensional simplex 𝜎 = [𝑥0, … , 𝑥𝑘] is the convex hull of the set
{𝑥0, … , 𝑥𝑘} ∈ ℝ𝑑, where 𝑥0, … , 𝑥𝑘 are affinely independent. 𝑥0, … , 𝑥𝑘 are called the vertices of
𝜎, and the simplices defined by the subsets of {𝑥0, … , 𝑥𝑘} are called the faces of 𝜎.

a

(a) Single vertex

a

b

(b) Segment

a

b

c

(c) Triangle

Figure 3.1: Examples of simplices.

We then need a way to meaningfully combine these basic building blocks so that the resulting
object can adequately reflect the topological structure of the metric space.

5



Definition 3.2 (Simplicial complex). A simplicial complex is a collection 𝐾 of simplices such
that:

• any face of a simplex of 𝐾 is a simplex of 𝐾
• the intersection of two simplices of 𝐾 is either the empty set, or a common face, or both.

Figure 3.2: Example of a simplicial complex that has two connected components, two 3-simplices,
and one 5-simplex.

The notion of simplicial complex is closely related to that of a hypergraph. One important
distinction lies in the fact that a subset of a hyperedge is not necessarily a hyperedge itself.

3.1.3 Simplicial homology

Using these definitions, we can define homology on simplicial complexes [18, 23]. In this section,
we restrict to homology with coefficients in ℤ2, the field with two elements.

Definition 3.3 (𝑘-chains). Let 𝐾 be a finite simplicial complex, and 𝑝 a non-negative integer.
The space of 𝑘-chains 𝐶𝑝(𝐾) of 𝐾 is the set of formal sums of 𝑝-simplices of 𝐾. More precisely,
it is the ℤ2-vector space spanned by the 𝑝-simplices of 𝐾.

Since the coefficients of 𝐶𝑝(𝐾) are in ℤ2, a 𝑝-chain is simply a finite collection of 𝑝-simplices.
The sum of two 𝑘-chains is the symmetric difference of the two chains, i.e. the collection of 𝑝-
simplices that belong to either, but not both, of the chains.

Definition 3.4 (Boundary). The boundary of a 𝑝-simplex 𝜎 is the (𝑝 − 1)-chain

𝜕𝑝(𝜎) ∶= ∑
𝜏∈𝐾𝑝−1, 𝜏⊂𝜎

𝜏,

where 𝐾𝑝−1 is the set of (𝑝 − 1)-simplices of 𝐾.

As the 𝑝-simplices form a basis of 𝐶𝑝(𝐾), 𝜕𝑝 can be extended into a linear map from 𝐶𝑝(𝐾)
to 𝐶𝑝−1(𝐾), called the boundary operator. The elements of the kernel Ker(𝜕𝑝) are called the
𝑝-cycles of 𝐾. The image Im(𝜕𝑝) is the space of 𝑝-boundaries of 𝐾.

Lemma 3.1. The image of 𝜕𝑝+1 is a subset of the kernel of 𝜕𝑝.

Proof. The boundary of a boundary is always empty. To see this, consider the boundary of a
(𝑝 + 1)-simplex 𝜎. The boundary of 𝜎 consists of all 𝑝-faces of 𝜎. The boundary of this boundary
will contain each (𝑝 − 1)-face of 𝜎 twice, and since 1 + 1 = 0 in ℤ2, we have that

𝜕𝑝 ∘ 𝜕𝑝+1 ≡ 0.

This implies directly that Im(𝜕𝑝+1) ⊂ Ker(𝜕𝑝).
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Definition 3.5 (Homology). For any 𝑝 ∈ ℕ, the 𝑝-th (simplicial) homology group of a simplicial
complex 𝐾 is the quotient vector space

𝐻𝑝(𝐾) ∶= Ker(𝜕𝑝)/Im(𝜕𝑝+1).

The dimension 𝛽𝑝(𝐾) of 𝐻𝑝(𝐾) is called the 𝑝-th Betti number of 𝐾.

Let us close this overview of simplicial homology by a look at induced maps. Let 𝐾 and 𝐿 be
two simplicial complexes and 𝑓 ∶ 𝐾 ↦ 𝐿 a simplicial map between them. Since 𝑓 maps linearly
each simplex of 𝐾 to a simplex of 𝐿, we can extend it to map a chain of 𝐾 to a chain of 𝐿 of
the same dimension. If 𝑐 = ∑ 𝑎𝑖𝜎𝑖 is a 𝑝-chain in 𝐾, we can define 𝑓#(𝑐) = ∑ 𝑎𝑖𝜏𝑖, where
𝜏𝑖 = 𝑓(𝜎𝑖) if it has dimension 𝑝 and 𝜏𝑖 = 0 if 𝑓(𝜎𝑖) has dimension less than 𝑝.

… 𝐶𝑝(𝐿) 𝐶𝑝−1(𝐿) …

… 𝐶𝑝(𝐾) 𝐶𝑝−1(𝐾) …

𝜕𝑝+1 𝜕𝑝 𝜕𝑝−1

𝜕𝑝+1 𝜕𝑝 𝜕𝑝−1

𝑓𝑝
# 𝑓𝑝−1

#

Figure 3.3: Induced maps and boundary operators.

Proposition 3.2. 𝑓# commutes with the boundary operator:

𝑓# ∘ 𝜕𝐾 = 𝜕𝐿 ∘ 𝑓#.

Proof. Consider 𝑓𝑝
# ∶ 𝐶𝑝(𝐾) ↦ 𝐶𝑝(𝐿), and let 𝑐 = ∑ 𝑎𝑖𝜎𝑖 ∈ 𝐶𝑝(𝐾). If 𝑓(𝜎𝑖) has dimension 𝑝,

then all (𝑝 − 1)-faces of 𝜎𝑖 map to the corresponding (𝑝 − 1)-faces of 𝜏𝑖, and the proposition
follows. On the other hand, if 𝑓(𝜎𝑖) has dimension less than 𝑝, then the (𝑝 −1)-faces of σf 𝜎𝑖 map
to simplices of dimension less than 𝑝 − 1, with the possible exception of exactly two (𝑝 − 1)-faces
whose images coincide and cancel each other. So we have that 𝜕𝐿(𝑓#(𝜎𝑖)) = 𝑓#(𝜕𝐾(𝜎𝑖)) = 0.
(See [23] for details.)

Corollary 3.3. 𝑓# maps cycles to cycles, and boundaries to boundaries.

Therefore, 𝑓# defines a map over quotients, called the induced map on homology

𝑓𝑝
∗ ∶ 𝐻𝑝(𝐾) ↦ 𝐻𝑝(𝐿).

Proposition 3.4. 𝑓 ↦ 𝑓𝑝
∗ is a functor:

• if 𝑓 = id𝑋, then 𝑓𝑝
∗ = id𝐻𝑝(𝑋),

• if 𝑋
𝑓

⟶ 𝑌
𝑔

⟶ 𝑍, then (𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗.

The derivation of simplicial homology in this section used the field ℤ2. It is however possible
to define homology over any field. The definition of the boundary operator needs to be adapted
to ensure that the Lemma 3.1 remains true, even when 1 ≠ −1. In this dissertation, we consider
only persistent homology on ℤ2, as it is the field used in our implementation. It is important to
note however that changing the field of the vector spaces can affect the homology and therefore
the topological features detected [74].
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3.1.4 Filtrations

If we consider that a simplicial complex is a kind of “discretization” of a subset of a metric
space, we realise that there must be an issue of scale. For our analysis to be invariant under
small perturbations in the data, we need a way to find the optimal scale parameter to capture
the adequate topological structure, without taking into account some small perturbations, nor
ignoring some important smaller features.

To illustrate this, let us take the example of the Čech complex, one of the most important
tools to build a simplicial complex from a metric space.

Definition 3.6 (Nerve). Let 𝒮 = (𝑆𝑖)𝑖∈𝐼 be a non-empty collection of sets. The nerve of 𝒮 is the
simplicial complex whose vertices are the elements of 𝐼 and where (𝑖0, … , 𝑖𝑘) is a 𝑘-simplex if,
and only if, 𝑆0 ∩ ⋯ ∩ 𝑆𝑘 ≠ ∅.

Definition 3.7 (Čech complex). Let 𝑋 be a point cloud in an arbitrary metric space, and 𝜀 > 0.
The Čech complex ̌𝐶𝜀(𝑋) is the nerve of the set of 𝜀-balls centred on the points in 𝑋.

An example construction of a Čech complex is represented on Figure 3.4. The simplicial
complex depends on the value of 𝜀. To adequately represent the topological structure of the
underlying point cloud, it is necessary to consider all possible values of 𝜀 in order to capture all
the topological features.

𝜀

Figure 3.4: Example of a point cloud (left), and the corresponding Čech complex at level 𝜀 (right).
Dashed circles represent the 𝜀-balls used to construct the simplicial complex.

This is the objective of filtered simplicial complexes.

Definition 3.8 (Filtration). A filtered simplicial complex, or simply a filtration, 𝐾 is a sequence
(𝐾𝑖)𝑖∈𝐼 of simplicial complexes such that:

• for any 𝑖, 𝑗 ∈ 𝐼, if 𝑖 < 𝑗 then 𝐾𝑖 ⊆ 𝐾𝑗,
• ⋃𝑖∈𝐼 𝐾𝑖 = 𝐾.

To continue the example of Čech filtrations, one can build a sequence of simplicial complexes
for each value of 𝜀 > 0. Due to their construction, Čech complexes on a point cloud 𝑋 respect
the essential inclusion property:

∀𝜀, 𝜀′ > 0, 𝜀 < 𝜀′ ⟹ ̌𝐶𝜀(𝑋) ⊆ ̌𝐶𝜀′(𝑋).
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3.2 Persistent Homology

We can now compute the homology for each step in a filtration. This leads to the notion of
persistent homology [11, 74], which gives all the information necessary to establish the topological
structure of a metric space at multiple scales.

Definition 3.9 (Persistent homology). The 𝑝-th persistent homology of a simplicial complex 𝐾 =
(𝐾𝑖)𝑖∈𝐼 is the pair ({𝐻𝑝(𝐾𝑖)}𝑖∈𝐼

, {𝑓𝑖,𝑗}𝑖,𝑗∈𝐼,𝑖≤𝑗
), where for all 𝑖 ≤ 𝑗, 𝑓𝑖,𝑗 ∶ 𝐻𝑝(𝐾𝑖) ↦ 𝐻𝑝(𝐾𝑗)

is induced by the inclusion map 𝐾𝑖 ↦ 𝐾𝑗.

By functoriality (Proposition 3.4), 𝑓𝑘,𝑗 ∘ 𝑓𝑖,𝑘 = 𝑓𝑖,𝑗. Therefore, the functions 𝑓𝑖,𝑗 allow us to
link generators in each successive homology space in a filtration.

Because each generator corresponds to a topological feature (connected component, hole,
void, and so on, depending on the dimension 𝑝), we can determine whether it survives in the next
step of the filtration. We say that 𝑥 ∈ 𝐻𝑝(𝐾𝑖) is born in 𝐻𝑝(𝐾𝑖) if it is not in the image of 𝑓𝑖−1,𝑖.
We say that 𝑥 dies in 𝐻𝑝(𝐾𝑗) if 𝑗 > 𝑖 is the smallest index such that 𝑓𝑖,𝑗(𝑥) = 0. The half-open
interval [𝑖, 𝑗) represents the lifetime of 𝑥. If 𝑓𝑖,𝑗(𝑥) ≠ 0 for all 𝑗 > 𝑖, we say that 𝑥 lives forever
and its lifetime is the interval [𝑖, ∞).

The couples of intervals (birth time, death time) depends on the choice of basis for each
homology space 𝐻𝑝(𝐾𝑖). However, by the Fundamental Theorem of Persistent Homology [74],
we can choose basis vectors in each homology space such that the collection of half-open intervals
is well-defined and unique. This construction is called a barcode [11].

3.3 Topological summaries: barcodes and persistence diagrams

Although it contains relevant topological information, the persistent homology defined in the
previous section cannot be used directly in statistical methods. Topological summaries are a
compact representation of persistent homology as elements of a metric space. This is particularly
useful in the context of statistical analysis, e.g. when one needs to compare the output of a given
dataset to a null model.

One possible approach is to define a space in which we can project barcodes and study their
geometric properties. One such space is the space of persistence diagrams [23].

Definition 3.10 (Multiset). A multiset 𝑀 is the couple (𝐴, 𝑚), where 𝐴 is the underlying set
of 𝑀, formed by its distinct elements, and 𝑚 ∶ 𝐴 ↦ ℕ∗ is the multiplicity function giving the
number of occurrences of each element of 𝐴 in 𝑀.

Definition 3.11 (Persistence diagrams). A persistence diagram is the union of a finite multiset
of points in ℝ2 with the diagonal Δ = {(𝑥, 𝑥) | 𝑥 ∈ ℝ2}, where every point of Δ has infinite
multiplicity.

One adds the diagonal Δ for technical reasons. It is convenient to compare persistence dia-
grams by using bijections between them, so persistence diagrams must have the same cardinality.

In some cases, the diagonal in the persistence diagrams can also facilitate comparisons between
diagrams, as points near the diagonal correspond to short-lived topological features, so they are
likely to be caused by small perturbations in the data.

One can build a persistence diagram from a barcode by taking the union of the multiset of
(birth, death) couples with the diagonal Δ. Figure 3.5 summarises the entire pipeline.

One can define an operator dgm as the first two steps in the pipeline. It constructs a persistence
diagram from a subset of a metric space, via persistent homology on a filtered complex.

We can now define several distances on the space of persistence diagrams.
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Data Filtered complex Persistence diagram Interpretation

Figure 3.5: Persistent homology pipeline.

Definition 3.12 (Wasserstein distance). The 𝑝-th Wasserstein distance between two diagrams 𝑋
and 𝑌 is

𝑊𝑝[𝑑](𝑋, 𝑌 ) = inf
𝜙∶𝑋↦𝑌

[∑
𝑥∈𝑋

𝑑 (𝑥, 𝜙(𝑥))𝑝]

for 𝑝 ∈ [1, ∞), and:
𝑊∞[𝑑](𝑋, 𝑌 ) = inf

𝜙∶𝑋↦𝑌
sup
𝑥∈𝑋

𝑑 (𝑥, 𝜙(𝑥))

for 𝑝 = ∞, where 𝑑 is a distance on ℝ2 and 𝜙 ranges over all bijections from 𝑋 to 𝑌.

Definition 3.13 (Bottleneck distance). The bottleneck distance is defined as the infinite Wasser-
stein distance where 𝑑 is the uniform norm: 𝑑𝐵 = 𝑊∞[𝐿∞].

The bottleneck distance is symmetric, non-negative, and satisfies the triangle inequality.
However, it is not a true distance, as one can come up with two distinct diagrams with bottleneck
distance 0, even on multisets that do not touch the diagonal Δ.

birth

death

Figure 3.6: Bottleneck distance between two diagrams.

3.4 Stability

One of the most important aspects of topological data analysis is that it is stable with respect to
small perturbations in the data. More precisely, the second step of the pipeline in Figure 3.5 is
Lipschitz with respect to a suitable metric on filtered complexes and the bottleneck distance on
persistence diagrams [19, 20]. First, we define a distance between subsets of a metric space [53].

Definition 3.14 (Hausdorff distance). Let 𝑋 and 𝑌 be subsets of a metric space (𝐸, 𝑑). The
Hausdorff distance is defined by

𝑑𝐻(𝑋, 𝑌 ) = max [sup
𝑥∈𝑋

inf
𝑦∈𝑌

𝑑(𝑥, 𝑦), sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦)] .
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We can now give an appropriate stability property [19, 20].

Proposition 3.5. Let 𝑋 and 𝑌 be subsets in a metric space. We have

𝑑𝐵(dgm(𝑋), dgm(𝑌 )) ≤ 𝑑𝐻(𝑋, 𝑌 ).

3.5 Algorithms and implementations

Many algorithms have been developed to compute persistent homology. The first one developed,
and by far the most commonly used is the so-called standard algorithm, introduced for the field
ℤ2 in [22], and for general fields in [74]. This algorithm operates on the sequentially on the
column of a boundary matrix. Its complexity is therefore cubic in the number of simplices in the
worst case. It has been proven that this bound is hard [47].

Many algorithms have since been developed to deliver heuristic speed-ups in the case of
sparse matrices. There are both sequential algorithms, such as the dual algorithm [66, 67], and
algorithms that introduce parallelism in the computation, such as the distributed algorithm [7].

These algorithms have been implemented in many publicly-available implementations in
the last few years. For a complete review and benchmarks of these implementations, see [52].
Here, we focus on implementations that provide a Python interface and implement common data
structures, such as filtrations and persistence diagrams. State-of-the-art libraries include Ripser [6],
DIPHA [62], GUDHI [44], and Dionysus [46]. GUDHI and Dionysus are under active development,
with new versions released recently, exposing a complete Python API and implementing various
algorithms, including multifield persistence and cohomology.

In this project, Dionysus 2 has been selected for its ease of use, good documentation, and good
performance [52]. In this project, we only use persistent homology over the field ℤ2. Dionysus is
also one of the few libraries to implement zigzag persistence (section 4.2).
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4 Topological Data Analysis on Networks

4.1 Persistent homology for networks

We now consider the problem of applying persistent homology to network data. An undirected
network is already a simplicial complex of dimension 1. However, this is not sufficient to capture
enough topological information; we need to introduce higher-dimensional simplices. If the
network is connected, one method is to project the nodes of a network onto a metric space [52],
thereby transforming the network data into a point-cloud data. For this, we need to compute the
distance between each pair of nodes in the network (e.g. with the shortest-path distance).

Various methods to project nodes onto a metric space (called graph embeddings) are avail-
able [24]. These mapping try to preserve the structure of the network as much as possible, e.g.
by ensuring that neighbours in the network are neighbours in the metric space (according to
the distance in that space), and vice-versa. A few methods worth mentioning in this area are
spectral methods, which define the mapping according to the eigenvectors of a matrix constructed
from the graph. These methods have the advantage of minimizing a well-defined criterion, which
often admits an exact solution, and can often be computed exactly [24]. They include kernel
principal components analysis, multidimensional scaling, Markov diffusion maps and Laplacian
eigenmap. Other methods are latent space methods, which produce an embedding using a physical
analogy, such as spring networks and attractive forces. These methods are often used for graph
drawing (i.e. embedding in 2 or 3-dimensional spaces), but can only be approximated for large
networks [24].

Using these graph embeddings, one can get a point cloud in a Euclidean space, and build
a simplicial complex using one of the various methods developed for point clouds. One such
example is the Čech complex (subsection 3.1.4).

Another common method, for weighted networks, is called the weight rank-clique filtration
(WRCF) [59], which filters a network based on weights. The procedure works as follows:

1. Consider the set of all nodes, without any edge, to be filtration step 0.
2. Rank all edge weights in decreasing order {𝑤1, … , 𝑤𝑛}.
3. At filtration step 𝑡, keep only the edges whose weights are larger than or equal to 𝑤𝑡,

thereby creating an unweighted graph.
4. Define the maximal cliques of the resulting graph to be simplices.
At each step of the filtration, we construct a simplicial complex based on cliques; this is

called a clique complex [73]. The result of the algorithm is itself a filtered simplicial complex
(Definition 3.8), because a subset of a clique is necessarily a clique itself, and the same is true for
the intersection of two cliques.

This leads to one of the possibilities for applying persistent homology to temporal networks.
One can apply WRCF on a network, obtaining a filtered complex, to which we can then apply
persistent homology.

This method can quickly become very computationally expensive, as finding all maximal
cliques (e.g. using the Bron–Kerbosch algorithm) is a complicated problem, with an optimal
computational complexity of 𝒪(3𝑛/3) [70]. In practice, one often restrict the search to cliques
of dimension less than or equal to a certain bound 𝑑𝑀. With this restriction, the new simplicial
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complex is homologically equivalent to the original: they have the same homology groups up to
𝐻𝑑𝑀−1.

4.2 Zigzag persistence

The persistent homology methods exposed in the previous sections operate on filtrations which
are nested sequences of simplicial complexes:

⋯ ⟶ 𝐾𝑖−1 ⟶ 𝐾𝑖 ⟶ 𝐾𝑖+1 ⟶ ⋯ ,

where each ⟶ represents an inclusion map.
As we have seen in the previous section, filtrations can be built on networks. Computing

persistent homology therefore relies on aggregating temporal networks, and then building a
sequence of nested simplicial complexes orthogonal to the time dimension.

Another approach would be to use the existing temporal sequence in the network to build
the filtration. The issue in this case is that the sequence is no longer nested, as edges can be
added or removed at each time step (except for additive or dismantling temporal networks,
see Definition 2.4). The development of zigzag persistence [12, 13] solves this issue by introducing
a novel way to compute persistent homology on sequences of complexes that are no longer nested:

⋯ ⟷ 𝐾𝑖−1 ⟷ 𝐾𝑖 ⟷ 𝐾𝑖+1 ⟷ ⋯ ,

where each ⟷ represents an inclusion map oriented forwards or backwards.
To build this sequence from a temporal network, one can build a clique complex at each time

step. Edge additions and deletions will translate to simplex additions and deletions in the sequence
of simplicial complexes. More details of this implementation is provided in subsubsection 6.2.4.2.

Note that zigzag persistence is related to the more general concept of multi-parameter persist-
ence [14, 21], where simplicial complexes can be filtered with more than one parameter. It is an
active area of research, especially as the fundamental theorem of persistent homology is no longer
valid with more than one parameter, and there are significant challenges in the visualization of
“barcodes” for 2-parameter persistent homology [52].

The complexity of the zigzag algorithm is cubic in the maximum number of simplices in the
complex [13], which is equivalent to the worst-case complexity of the standard algorithm for
persistent homology (section 3.5). In practice however, zigzag computation tend to be much
longer than their standard counterparts. Computing zigzag persistence on a temporal network
is more costly than computing persistent homology on the weight rank clique filtration of the
aggregated graph.

The library Dionysus [46] is the only one to implement zigzag persistence at the time of this
writing. As implementation of the zigzag algorithm is not straightforward [13, 45], Dionysus was
the most logical option for the topological study of temporal networks.
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5 Persistent Homology for
Machine-Learning Applications

The output of persistent homology is not directly usable by most statistical methods. For example,
barcodes and persistence diagrams, which are multisets of points in ℝ2, are not elements of a
metric space in which one can perform statistical computations.

The distances between persistence diagrams defined in section 3.3 allow one to compare
different outputs. From a statistical perspective, it is possible to use a generative model of
simplicial complexes and to use a distance between persistence diagrams to measure the similarity
of our observations with this null model [2]. This would effectively define a metric space of
persistence diagrams. It is even possible to define some statistical summaries (means, medians,
confidence intervals) on these spaces [49, 71].

The issue with this approach is that metric spaces do not offer enough algebraic structure to
be amenable to most machine-learning techniques. Many of these methods, such as principal-
components analysis (PCA) and support vector machines (SVMs) require a Hilbert structure on
the feature space [15, 19]. Equipped with this structure, one can then define common operations
such as addition, average or scalar product on features, which then facilitate their use in machine
learning. One of the most recent development in the study of topological summaries has been to
find mappings between the space of persistence diagrams and Banach spaces[1, 10, 42, 43]. (The
definitions of common topological structures can be found in Appendix A.)

5.1 Vectorization methods

The first possibility is to build an explicit feature map. Each persistence diagram is projected into
a vector of ℝ𝑛, on which one can then build a suitable Hilbert structure.

The main examples in this category are persistence landscapes [10] and persistence images [1].

5.1.1 Persistence landscapes

Persistence landscapes [10] give a way to project barcodes to a space where it is possible to add
them meaningfully. It is then possible to define means of persistence diagrams, as well as other
summary statistics.

The function mapping a persistence diagram to a persistence landscape is injective, but no
explicit inverse exists to go back from a persistence landscape to the corresponding persistence
diagram. Moreover, a mean of persistence landscapes does not necessarily have a corresponding
persistence diagram.

Definition 5.1 (Persistence landscape). Thepersistence landscape of a diagram 𝐷 = {(𝑏𝑖, 𝑑𝑖)}
𝑛
𝑖=1

is the set of functions 𝜆𝑘 ∶ ℝ ↦ ℝ, for 𝑘 ∈ ℕ, such that

𝜆𝑘(𝑥) = 𝑘-th largest value of {𝑓(𝑏𝑖,𝑑𝑖)(𝑥)}𝑛
𝑖=1

,
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(and 𝜆𝑘(𝑥) = 0 if the 𝑘-th largest value does not exist), where 𝑓(𝑏,𝑑) is a piecewise-linear function
defined by:

𝑓(𝑏,𝑑) =
⎧{
⎨{⎩

0, if 𝑥 ∉ (𝑏, 𝑑),
𝑥 − 𝑏, if 𝑥 ∈ (𝑏, 𝑏+𝑑

2 ),
−𝑥 + 𝑑, if 𝑥 ∈ ( 𝑏+𝑑

2 , 𝑑) .

Moreover, one can show that persistence landscapes are stable with respect to the 𝐿𝑝 distance,
and that the Wasserstein and bottleneck distances are bounded by the 𝐿𝑝 distance [10]. We can
thus view the landscapes as elements of a Banach space in which we can perform the statistical
computations.

5.1.2 Persistence images

Persistence images [1] consist in a convolution of the persistence diagram with a probability
distribution, followed by a discretization of the resulting distribution in order to obtain a finite-
dimensional vector. Most of the following section is derived from the original paper [1].

Definition 5.2 (Persistence surface). Let 𝐵 be a persistence diagram, and 𝑇 ∶ ℝ2 ↦ ℝ2 the linear
transformation 𝑇 (𝑥, 𝑦) = (𝑥, 𝑦 − 𝑥). Let 𝜙𝑢 ∶ ℝ2 ↦ ℝ be a differentiable probability density
function with mean 𝑢 ∈ ℝ2, and 𝑓 a non-negative weighting function which is zero along the
horizontal axis, continuous, and piecewise differentiable.

The persistence surface associated to 𝐵 is the function 𝜌𝐵 ∶ ℝ2 ↦ ℝ such that

𝜌𝐵(𝑧) = ∑
𝑢∈𝑇 (𝐵)

𝑓(𝑢)𝜙𝑢(𝑧).

Then, one needs to reduce the persistence surface to a finite-dimensional vector by discretizing
a subdomain of 𝜌𝐵 and integrating it over each region.

Definition 5.3 (Persistence image). Let 𝜌𝐵 be the persistence surface of a persistence diagram 𝐵.
We fix a grid on the plane with 𝑛 cells (called pixels). The persistence image of 𝐵 is the collection
of pixels, where for each cell 𝑝,

𝐼(𝜌𝐵)𝑝 = ∬
𝑝

𝜌𝐵 d𝑦 d𝑥.

There are three parameters:
• the resolution of the grid overlaid on the persistence surface,
• the probability distribution, which is often taken as a Gaussian distribution centred on each
point (one still needs to choose an appropriate variance),

• the weight function, which must be zero on the horizontal axis (which corresponds to the
diagonal Δ before transformation by the function 𝑇), continuous, and piecewise differen-
tiable in order for the stability results to hold. Generally, weighting functions are taken
non-decreasing in 𝑦 in order to weight points of higher persistence more heavily.

All of these choices are non-canonical, but the classification accuracy on most tasks seem to
be robust to the choice of resolution and variance of the Gaussian distribution [72].

It is also important to note that points with infinite persistence are ignored by the weighting
function 𝑓. Persistence images are therefore not suitable in applications where these features can
be important to consider.

Persistence images are stable with respect to the 1-Wasserstein distance between persistence
diagrams (and with respect to the 𝐿1, 𝐿2, and 𝐿∞ distances between images) [1].

In practice, persistence images are interesting because they project persistence diagrams in a
Euclidean space. Compared to persistence landscape, one can apply a broader range of machine-
learning techniques. It has also been observed that persistence images outperform performance
landscapes in many classification tasks, with a comparable computational efficiency [1].
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5.2 Kernel-based methods

The other possibility is to define feature maps implicitly by building kernels on persistence
diagrams. Such a kernel allows to use a wide range of kernel-based machine-learning methods.

Let us recall the general framework of kernel methods [48, 65].

Definition 5.4 (kernel). A function 𝑘 ∶ 𝑋 × 𝑋 ↦ ℝ+ on a non-empty set 𝑋 is a kernel if there
exist a Hilbert space ℋ and a map 𝜙 ∶ 𝑋 ↦ ℋ such that

∀𝑥, 𝑦 ∈ 𝑋, 𝑘(𝑥, 𝑦) = ⟨𝜙(𝑥), 𝜙(𝑦)⟩ℋ.

The Hilbert space ℋ is called the feature space and the function 𝜙 is called the feature map.

As inner products are positive definite, so are kernels, since they are inner products on feature
maps.

Definition 5.5 (Reproducing kernel). Let ℋ be a Hilbert space of functions from a non-empty
set 𝑋 to ℝ. A function 𝑘 ∶ 𝑋 ↦ ℝ is called a reproducing kernel of ℋ if it satisfies:

• ∀𝑥 ∈ 𝑋, 𝑘(⋅, 𝑥) ∈ ℋ,
• ∀𝑥 ∈ 𝑋, ∀𝑓 ∈ ℋ, ⟨𝑓, 𝑘(⋅, 𝑥)⟩ℋ = 𝑓(𝑥).

Note that every reproducing kernel is a kernel, with feature space ℋ and feature map
𝜙 ∶ 𝑥 ↦ 𝑘(⋅, 𝑥). In this case, 𝜙 is called the canonical feature map: the features are not explicited
as vectors of ℝ𝑛, but as functions on 𝑋.

If ℋ has a reproducing kernel, it is called a reproducible kernel Hilbert space (RKHS). The
important result here is the Moore-Aronszajn theorem [9]: for every positive definite function 𝑘,
there exists a unique RKHS with kernel 𝑘.

We can now build a feature space with a Hilbert structure without defining explicitly the
feature map. Defining a kernel, i.e. any positive definite function, on persistence diagrams is
enough to guarantee the existence of a unique RKHS with the adequate structure to perform
machine-learning tasks.

The following sections will define some relevant kernels.

5.2.1 Sliced Wasserstein kernel

The sliced Wasserstein kernel is a new kernel on persistence diagrams introduced by Carrière et al.
in [15]. The general idea is to intersect the plane by lines going through the origin, and projecting
the points of the persistence diagrams onto these lines, computing the distance between the
diagrams as the distance between measures on the real line. These distances are then integrated
over all the possible lines passing through the origin.

The formal definition (taken from [15]) relies on the 1-Wasserstein distance between measures
on ℝ.

Definition 5.6 (1-Wasserstein distance). Lt 𝜇 and 𝜈 be two non-negative measures on ℝ such
that 𝜇(ℝ) = 𝜈(ℝ). The 1-Wasserstein distance between 𝜇 and 𝜈 is

𝒲(𝜇, 𝜈) = inf
𝑓

∫
ℛ

𝑓(𝑥) [𝜇(d𝑥) − 𝜈(d𝑥)] ,

where 𝑓 is 1-Lipschitz.

One can now define formally the sliced Wasserstein kernel.
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Definition 5.7 (Sliced Wasserstein kernel). Let 𝕊1 be the 𝐿2-distance sphere in ℝ2. Given 𝜃 ∈ 𝕊1
let 𝐿(𝜃) be the line {𝜆𝜃 ∶ 𝜆 ∈ ℝ}, and 𝜋𝜃 the orthogonal projection onto 𝐿(𝜃). Let 𝜋Δ be the
orthogonal projection on the diagonal.

Let 𝐷1 and 𝐷2 be two persistence diagrams, and let

𝜇𝜃
1 = ∑

𝑝∈𝐷1

𝛿𝜋𝜃(𝑝) and 𝜇𝜃
1Δ = ∑

𝑝∈𝐷1

𝛿𝜋𝜃∘𝜋Δ(𝑝),

and similarly for 𝜇𝜃
2 and 𝜇𝜃

2Δ.
The sliced Wasserstein distance is defined as

𝑆𝑊(𝐷1, 𝐷2) = 1
2𝜋

∫
𝕊𝟙

𝒲(𝜇𝜃
1 + 𝜇𝜃

2Δ, 𝜇𝜃
2 + 𝜇𝜃

1Δ) d𝜃.

One can show that 𝑆𝑊 is negative definite [15]. The function 𝑘𝑆𝑊 defined as

𝑘𝑆𝑊(𝐷1, 𝐷2) = exp(−𝑆𝑊(𝐷1, 𝐷2)
2𝜎2 )

is therefore a valid kernel, called the sliced Wasserstein kernel.

Stability It can be shown that the sliced Wasserstein kernel is equivalent to the 1-Wasserstein
distance between persistence diagrams (Definition 3.12). (For a definition of metric equivalence,
see Appendix A.)

Approximate computation In practice, 𝑘𝑆𝑊 can be approximated by sampling 𝑀 directions
between −𝜋/2 and 𝜋/2. For each direction 𝜃𝑖 and for each persistence diagram 𝐷, one computes
the scalar products between the points of the diagram and 𝜃𝑖, and sorts them into a vector 𝑉𝜃𝑖

(𝐷).
The 𝐿1-distance between the vectors corresponding to each diagram is then averaged over the
samples directions:

𝑆𝑊𝑀(𝐷1, 𝐷2) = 1
𝑀

𝑀
∑
𝑖=1

‖𝑉𝜃𝑖
(𝐷1) − 𝑉𝜃𝑖

(𝐷2)‖
1
.

The complete approximate computation is detailed in algorithm 1. It has a complexity of
𝒪(𝑀𝑁 log(𝑁)), where 𝑁 is an upper bound on the cardinality of the persistence diagrams.

5.2.2 Persistence scale-space kernel

The persistent scale-space kernel (PSSK) [43, 63] is another kernel on persistence diagrams. The
following overview is summarised from [63]. The general idea is to represent a diagram 𝐷 as a
sum of Dirac deltas centred on each point of 𝐷. This representation is a natural projection onto
the sapce of functionals, which has a Hilbert structure.

However, this representation does not take into account the distance of the points of 𝐷 to
the diagonal. This is important since points closed to the diagonal represent short-lived features,
and are therefore more likely to be noise. Do take this into account, the sum of Dirac deltas is
taken as the initial condition of a heat diffusion on the half-plane above the diagonal, with a null
boundary condition on the diagonal itself.

This leads to the definition of the embedding as the solution of partial differential equation,
which admit an explicit solution in the form of a positive definite kernel between persistence
diagrams. This kernel also depends on a scale parameter, which allows to control the robustness
of the embedding to noise.
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Algorithm 1: Approximate computation of the sliced Wasserstein kernel.
Input: 𝐷1 = {𝑝1

1, … , 𝑝1
𝑁1

}, 𝐷2 = {𝑝2
1, … , 𝑝2

𝑁1
}, 𝑀

Output: 𝑆𝑊
Add 𝜋Δ(𝐷1) to 𝐷2 and vice-versa
𝑆𝑊 ← 0
𝜃 ← −𝜋/2
𝑠 ← 𝜋/𝑀
for 𝑖 ← 1to 𝑀 do

Store the products ⟨𝑝1
𝑘, 𝜃⟩ in an array 𝑉1

Store the products ⟨𝑝2
𝑘, 𝜃⟩ in an array 𝑉2

Sort 𝑉1 and 𝑉2 in ascending order
𝑆𝑊 ← 𝑆𝑊 + 𝑠‖𝑉1 − 𝑉2‖1
𝜃 ← 𝜃 + 𝑠

end
𝑆𝑊 ← 𝑆𝑊/𝜋

This kernel also comes with stability guarantees, as it is Lipschitz-continuous with respect to
the 1-Wasserstein distance. It is also fast, as the distance between two diagrams 𝐷1 and 𝐷2 can
be computed in 𝒪(|𝐷1||𝐷2|), where |𝐷| is the number of points in the diagram, or approximated
in 𝒪(|𝐷1| + |𝐷2|) with bounded error. In practice, empirical tests show that the persistence
scale-space kernel significantly outperforms the persistence landscapes in shape classification
tasks [63].

5.2.3 Persistence weighted Gaussian kernel

The persistence weighted Gaussian kernel (PWGK) [42] is actually a family of kernels on per-
sistence diagrams. Given a diagram 𝐷, one can define a measure 𝜇𝑤

𝐷 ∶= ∑𝑥∈𝐷 𝑤(𝑥)𝛿𝑥, where
𝛿𝑥 is the Dirac delta centred on 𝑥. The weight function 𝑤 can be chosen to give more weight
to points farther from the diagonal. One example is 𝑤(𝑥) ∶= arctan (𝐶(death(𝑥) − birth(𝑥))𝑝),
with 𝐶 > 0 and 𝑝 ∈ ℕ∗.

Then, given a kernel 𝑘 and the corresponding RKHS ℋ𝑘,

𝜇𝑤
𝐷 ↦ ∑

𝑥∈𝐷
𝑤(𝑥)𝑘(⋅, 𝑥)

is an embedding of 𝜇𝑤
𝐷 in ℋ𝑘. The persistence weighted gaussian kernel is obtained by choosing

𝑘 as the Gaussian kernel 𝑘𝐺(𝑥, 𝑦) ∶= exp(− ‖𝑥−𝑦‖2

2𝜎2 ).
The PWGK is stable with respect to the bottleneck distance [42], and allows for efficient

computation. If the persistent diagrams contain at most 𝑛 points, computation of the kernel
involves 𝒪(𝑛2) evaluations of the kernel 𝑘. Similarly to the PSSK, an approximation is possible
in 𝒪(𝑛).

Experimental results on shape classification with SVMs show a significant improvement in
accuracy over the PSSk, persistence images, and persistent landscapes [42].

5.3 Comparison

Every vectorization exposed in the previous sections are injective and stable with respect to some
distance in the space of persistence diagrams. None of them, however, are surjective, and no
explicit inverse exists.
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Only one of these methods preserves the metric on the space of persistence diagrams: the
sliced Wasserstein kernel, due to its equivalence to the 1-Wasserstein distance, as mentioned
in subsection 5.2.1. As such, it is considered as the state-of-the-art in kernel embeddings of
persistence diagrams.

There are two broad classes of applications that require different kinds of vectorization
methods. On the one hand, if one needs to go back from the feature space to the diagram
space, the best bet is an embedding that preserves distances, such as the sliced Wasserstein
kernels, or has strong stability guarantees, such as the persistent weighted Gaussian kernel. These
embeddings are best for distance-based methods, such as multidimensional scaling or nearest
neighbours algorithms.

On the other hand, getting insights from individual points of a diagram, in order to recover
information about individual topological features (such as cycles, holes, or voids), is a much
harder, less well-studied problem. For instance, to recover the topological features of the mean of
persistence diagrams, one would need to fit one of the vectorization methods on the mean. For
this, persistence landscapes or images seem better suited.

This project focuses on clustering of networks. As such, conservation of the metric and
stability is extremely important. Due to the theoretical guarantees, we will focus on the sliced
Wasserstein kernel, which is also significantly easier to implement in its approximate version
than the PSSK (which uses random Fourier features [63]) and the PWGK (which uses the fast
Gauss transform [42]).
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6 Temporal partitioning of networks

6.1 Problem statement

6.1.1 Data

Temporal networks represent an active and recent area of research. The additional dimension
adds complexity to the study of graphs. As such, many methods that work well with graphs fail
in the context of temporal networks.

Temporal networks are much more difficult to visualize, which makes it harder to uncover
patterns directly [32]. Moreover, there are many issues in data collection. Complex interaction
networks where each edge can be either present or absent at each time step grow exponentially
in size with the number of nodes and the total data collection time [32]. Empirical temporal
networks also tend to exhibit oversampling and noise, due to the nature of the measurements.
For instance, proximity networks can record an interaction between two individuals if they walk
close to each other without actually interacting. New advances try to take into account these
limitations of data collection [50, 69].

In this study, we will consider temporal networks with contact interactions. In this context,
interactions between nodes are supposed to have a duration of 0, and oversampling is used to
represent a long interaction. For instance, in a network sampled every 5 seconds, an interaction
lasting for 30 seconds will be recorded in 6 consecutive time steps.

6.1.2 Sliding windows

One possible solution to the study temporal networks is a partitioning of the time scale using
sliding windows.

Definition 6.1 (Temporal partitioning). Let 𝐺 = (𝑉 , 𝐸, 𝒯, 𝜌) a temporal network, and let
𝐶 = (𝑐1, … , 𝑐𝑛) be a cover of 𝒯 by non-empty intervals of ℕ.

Then the sequence of temporal networks (𝐺1, … , 𝐺𝑛), where 𝐺𝑖 = (𝑉 , 𝐸, 𝑐𝑖, 𝜌𝑖) and
𝜌𝑖(𝑒, 𝑡) = 𝜌(𝑒, 𝑡)𝟙𝑡∈𝑐𝑖

, is a temporal partitioning of 𝐺.
The partitioning is uniform if all intervals of 𝐶 have the same length. This length is called the

temporal resolution of the partitioning.

In this project, we will only consider uniform partitioning of a finite temporal domain, where
the intersection of two consecutive intervals have the same length. This intersection length is
called the overlap.

Δ𝑡

𝑠

Figure 6.1: Uniform temporal partitioning with resolution Δ𝑡 and overlap 𝑠.
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The choice of temporal resolution and overlap have a significant effect on the results of the
analysis [41, 64, 69]. Different tasks may require specific parameters. A large resolution can
overlook a significant pattern, while small overlap may cut through significant features, divided
between two consecutive intervals.

6.1.3 Classification

After partitioning the temporal network, it is possible to run any kind of classification task on the
resulting sequence of subnetworks.

If labels are available on each subnetwork, it is possible to run some supervised learning
tasks. In the more common case of unsupervised learning, there are many possibilities, including
the clustering of all subnetworks, or the detection of change points, where the structure of the
network change fundamentally [55].

In this dissertation, we focus on unsupervised clustering of the subnetworks in order to detect
periodicity in the original temporal network. Most machine-learning algorithms cannot take
temporal networks directly as inputs. It is thus necessary to vectorize these networks, i.e. to
project them onto a metric space with a structure suitable to the algorithm used. For instance, one
could use traditional statistical summaries of networks (section 2.2), or the topological methods
and their vectorizations discussed in the previous chapters.

The choice of vectorization depends on the choice of the clustering algorithm itself. Some
machine-learning techniques, such as support vector machines, require a Hilbert structure on
the input space [15, 28], while some, like 𝑘-nearest neighbours or agglomerative clustering, only
require a metric space [28]. The feature space will therefore restrict the set of clustering algorithms
available.

6.1.4 Applications

The persistent homology pipeline can be used to determine different properties of temporal
networks. This study focuses on determining the periodicity of a temporal network. By clustering
the subnetworks obtained by partitioning the temporal domain into sliding windows, it is possible
to determine if a temporal network is periodic in its topological structure, and if so, to estimate
its period.

6.2 The analysis pipeline

6.2.1 General overview

The analysis pipeline consists in several steps:
1. Load the data: temporal networks are often distributed as interaction lists. In these files,

each line consists of two nodes and a timestamp, and thus represents one contact interaction.
One can reconstruct the temporal network by extracting all timestamps of a given edge and
adding them as an edge property. It is then easy to extract a subnetwork within a specific
time interval.

2. Interaction networks are sometimes directed. In these cases, it is necessary to transform
the network into an undirected one, as most method (particularly topological methods,
such as WRCF and zigzag persistence) only work on undirected networks.

3. Using the methods discussed in subsection 6.2.3, the temporal domain is segmented into
sliding windows and a list of subnetworks can be generated.

4. Features are extracted from each subnetwork. These features can be constructed from
different kinds of persistent homology on networks, as discussed in subsection 6.2.4.
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Figure 6.2: Overview of the analysis pipeline. New approaches introduced in this study are
highlighted in italics.

General approach Specific pipeline

Dataset

Data sources
• Generative model (7.1.1)

– Erdős-Rényi, Watts-Strogatz models
– periodic distribution of interactions

• Social networks data (7.1.2)

Data representation
Temporal networks

• Definition (2.1)
• Representation (6.2.2)

Data processing Temporal partitioning (standard) (6.2.3)
Novelty: Clustering of time windows

Data analysis

Topological tools (6.2.4)
Novelty: application of TDA to temporal networks
Novelty: comparison between WRCF and zigzag
persistence for networks

Interpretation

Clustering (6.2.5)
• Distance matrix
Novelty: comparison between bottleneck
distance and SW kernel

• Hierarchical clustering
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5. Depending on the methods used, the feature space is equipped with a metric that can make
it a Hilbert space or a simple metric space. In any case, a distance matrix representing
pairwise distances between each subnetwork is computed.

6. Hierarchical clustering is applied to the distance matrix.
The whole analysis pipeline is summarised in Figure 6.2.

6.2.2 Data representation

The data is represented in the algorithms as multigraphs. Each edge is associated to a timestamp
(an integer). Two nodes can be linked by multiple edges, each one of them representing a time at
which the edge is present.

This representation allows for easy filtering, as one can extract a temporal network in a given
time interval by keeping only the edges whose timestamp is included in the interval. One can
also build the underlying aggregated graph by “collapsing” multiple edges into a single one.

It is important to note that the nodes of the network are completely static and always present.
This follows the temporal networks model adopted in Definition 2.3.

6.2.3 Sliding windows

As mentioned in subsection 6.1.2, we consider temporal networks whose temporal domain is a
finite interval of ℕ.

For a temporal resolution Δ𝑡 and an overlap 𝑠, we compute the temporal partitioning as
follows.

1. Compute the length of the temporal domain 𝒯.
2. Segment it into 𝑁 sliding windows of length Δ𝑡 with an overlap 𝑠.
3. Each subnetwork in the sequence contains only the interactions appearing during the

corresponding sliding window.

Algorithm 2: Temporal partitioning of network with sliding windows.
Input: Graph 𝐺, resolution res
Output: List of subnetworks windows
times ← list of timestamps in 𝐺
window_length ← res × (max(times) − min(times))
for 𝑖 ← 0 to 1/res − 1 do

windows [𝑖] ← subnetwork of 𝐺 containing all nodes, and edges whose timestamp is
in [min(times) + window_length × 𝑖,min(times) + window_length × (𝑖 + 1)]

end

6.2.4 Topological analysis

Themajor novelty in this analysis is to introduce topological features in temporal network analysis.
The idea is that the techniques introduced in chapter 3 will reveal additional structure in networks
that is not captured by traditional methods, and is relevant for detecting periodicity or other
important properties of temporal networks.

Here, two different approaches are presented and compared. One is focusing on the topology
of the aggregated graph, using weight-rank clique filtration, while the other leverages the temporal
dimension by using the more recent advances in generalized persistence, specifically zigzag
persistence.
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6.2.4.1 Aggregated graph persistence homology

The first possibility to introduce topological features into the feature map is to use weight-rank
clique filtration (section 4.1) on the aggregated static graphs.

For this, we associate to each edge in the network a weight corresponding to the number
of time steps in which it is present. For an edge 𝑒 and a time interval 𝑐𝑖 (keeping the notations
of Definition 6.1), the weight associated to 𝑒 is

𝑤(𝑒) = ∑
𝑡∈𝑐𝑖

𝜌(𝑒, 𝑡).

The resulting graph is called the aggregated graph of the temporal network on the time interval
𝑐𝑖. This graph being weighted, it is possible to compute persistence diagrams using weight-rank
clique filtration (the algorithm is exposed in section 4.1).

6.2.4.2 Zigzag persistence

The main drawback of WRCF persistence is the loss of any kind of temporal information in the
network. Three nodes can be detected as being very close to one another even though their
contacts might have been in separate time steps. We can avoid aggregating the temporal networks
by using generalised persistence, specifically zigzag persistence as exposed in section 4.2.

In practice, zigzag persistence is more computationally expensive thanWRCF persistence [13],
and leads to lower number of topological features at every dimension. Aggregating networks
tend to artificially create a lot of cliques that do not appear in the original temporal network.

To compute zigzag persistence, the algorithm needs the maximal simplicial complex, i.e. the
union of all simplicial complexes in the sequence. In the case of temporal networks, this is the set
of maximal cliques in the aggregated graph. Zigzag persistence can then be computed from the
list of times when each simplex enters or leaves the maximal filtration. The following algorithm
determines these times:

1. Determine the maximal simplicial complex by computing the cliques in the aggregated
graph.

2. For each time step 𝑡:
• Keep only the edges present at this time step (i.e. the edges 𝑒 such that 𝜌(𝑒, 𝑡) = 1).
• Compute all the cliques in this network.

3. For each clique in the maximal simplicial complex, determine where it is present and where
it is absent in the sequence of lists of cliques.

4. Finally, determine the transition times in the presence arrays.
This computation can be quite costly for large networks, even before starting the main zigzag

algorithm. Clique-finding is indeed an NP-complete problem [39]. This is thus by far the most
computationally expensive step of the analysis pipeline, and is also more expensive than WRCF
persistence.

6.2.5 Clustering

6.2.5.1 Distance matrix

In order to cluster the subnetworks obtained by temporal partitioning of the original network,
one needs to introduce a notion of distance between the topological features. Since the output
of the previous step in the analysis pipeline take the form of persistence diagrams, two options
are possible: a standard measure of distance between diagrams (see section 3.3), or one of the
vectorization or kernel-based methods exposed in chapter 5.
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One of the main contributions of this study is to compare the performance of the bottleneck
distance (Definition 3.13) and of the sliced Wasserstein kernel (subsection 5.2.1) in the context of
network clustering.

A distance matrix is obtained by computing pairwise distances between each pair of subnet-
works obtained during the temporal partitioning step. One important remark is that the distances
considered compute distances between persistence diagrams. However, persistence homology re-
turns a sequence of such persistence diagrams for each subnetwork, each diagram in the sequence
corresponding to topological features of a specific dimension. For the purposes of clustering,
0-dimensional features are not extremely interesting since they correspond to connected compon-
ents, and 2 or 3-dimensional diagrams are often nearly empty except for very large subnetworks.
It is therefore appropriate to restrict our analysis to 1-dimensional diagrams, which represent
a good compromise. This is consistent with what has been done for point cloud data classifica-
tion [15].

The bottleneck distance gives the space of persistence diagram a metric-space structure.
Meanwhile, the sliced Wasserstein kernel gives the space a structure of a Hilbert space, which can
be required for several machine-learning techniques, such as support-vector machines (SVMs) or
principal components analysis (PCA).

For the implementation, we use the approximate computation of the sliced Wasserstein kernel
(algorithm 1) sampled along 10 directions, which is actually faster in practice than the computation
of the bottleneck distance. For the computation of the bottleneck distance, the diagram points
that go to infinity are excluded. According to the definition of the bottleneck distance, if two
diagrams do not have the same number of infinite points, the distance is automatically infinity,
which does not work well in clustering algorithms. Moreover, this does not interfere with the
comparison between the bottleneck distance and the sliced Wasserstein kernel, since infinite
points are ignored by the kernel anyway.

6.2.5.2 Hierarchical clustering

To simplify the interpretation of the analysis and the comparison between the different approaches,
the clustering algorithm used is hierarchical clustering [28].

The main advantage is that it does not require knowing in advance the number of clusters
that one is looking for. The only input is the dissimilarity matrix, obtained from a single metric.
It is necessary here to use an algorithm that does not require the observations themselves, as
in this case they take the form of a persistence diagram instead of a numeric vector. Moreover,
kernel-based methods are not applicable to the bottleneck distance since it does not confer a
Hilbert structure to the space of persistence diagram. By contrast, hierarchical clustering only
requires a valid measure of distance.

The hierarchical representation (or dendrogram) is also especially useful in the context of
periodicity detection, since periodicity can appear at various levels of the hierarchy.

Hierarchical clustering is performed in a bottom-up way, also called agglomerative clustering.
Starting from the distance matrix, with each observation in its own cluster, the algorithm merges
rows and columns at each step of the clustering, updating the distances between the new clusters.
To do that, it needs to compute the distance between two clusters. Several approaches are possible
to compute the distance between two clusters 𝐴 and 𝐵 using a metric 𝑑:

• Complete linkage: the distance between 𝐴 and 𝐵 is the maximum distance between their
elements

max {𝑑(𝑥, 𝑦) ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}

• Single linkage: using the minimum distance

min {𝑑(𝑥, 𝑦) ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}
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• Average linkage: using the mean distance between the elements

1
|𝐴||𝐵|

∑
𝑥∈𝐴

∑
𝑦∈𝐵

𝑑(𝑥, 𝑦).

The implementation used is taken from the library Scikit-Learn [54].
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7 Results and Discussion

7.1 Data

7.1.1 Generative model for periodic temporal networks

In order to detect periodicity, one can generate a random temporal network with a periodic
structure.

We first build a random Erdős-Rényi graph. Starting from this base graph, we generate a
temporal stream for each edge independently. This generative model is inspired by previous work
on periodic temporal networks [61].

For each edge, we generate a sequence of times in a predefined time range 𝑇. For this, we
choose uniformly at random a number of interactions 𝑛 in [0, 𝑇 /2]. We then generate at random
a sequence of 𝑛 times in [0, 𝑇 ] from a density

𝑓(𝑡) = sin(𝑓𝑡) + 1,

where 𝑓 is the frequency. The times are then sorted.

Figure 7.1: Example of a random temporal network generated by algorithm 3.

Algorithm 3: Random temporal network generation.
Input: nodes, edge_prob, time_range, frequency
Output: network
basegraph ← ErdősRényi(nodes, edge_prob)
network ← network with no edges and the vertices of basegraph
for 𝑒 ∈ basegraph.edges do

times ← random_edge_presences(time_range, frequency)
for 𝑡 ∈ times do

Add (𝑒.source, 𝑒.target, 𝑡) to network
end

end

27



The complete method to generate a random network is summarised in algorithm 3. The
function random_edge_presences returns a sequence of periodic times. An example of a small
random network can be found on Figure 7.1.

7.1.2 Datasets

The SocioPatterns dataset [36] has been collected during the infectious exhibition at the Science
Gallery in Dublin, Ireland from April 17th to July 17th, 2009. During this event, a radio-frequency
identification (RFID) device was embedded into each visitor’s badge (as part of an interactive
exhibit). RFID devices exchange radio packets when they are at a close range from each other
(between 1 m and 1.5 m), in a peer-to-peer fashion. The data collection process is described in
detail in [17].

The devices are configured so that face-to-face interactions between two individuals is accur-
ately recorded with a probability of 99% over a period of 20 s, which is an appropriate time scale
to record social interaction. False positives are also extremely rare as RFID devices have a very
limited range and multiple radio packet exchanges are required to record an interaction.

The event in Dublin recorded more than 230,000 contact interactions between more than
14,000 visitors. The data is made available both in the form of daily-aggregated static networks [34]
and as a list of contact interactions (each element being a timestamp and two nodes IDs) [35].

Figure 7.2: Aggregated networks for two different days of the SocioPatterns dataset. Nodes are
colored from red to purple according to their arrival time. (Source: [36].)

The interactions times of the SocioPatterns dataset show that there are limited interactions
between visitors entering the exhibition more than one hour apart (see Figure 7.2). A consequence
of this is that the network diameter of the daily aggregated graphs connects visitors entering the
venue at successive times, as can be seen in the figure.

Another interesting properties of these interactions is their lengths. Most of the interaction
last less than one minute, as can be expected in the context of visitors in a museum exhibition.
The distribution of the interaction durations shows broad tails, decaying slightly faster than a
power law [36].

The temporal network has also been used in a variety of contexts from percolation analysis and
dynamical spreading to community detection [36]. These studies have confirmed that topological
criteria detect efficiently the edges acting as bridges between communities [26, 31].

Many empirical temporal networks exhibit periodic patterns [30]. Many papers have explored
traditional network statistics and methods to uncover cyclic behaviour in various datasets, mainly
telecommunication networks [3, 4, 29, 37].

Visualizations show significant variations in the patterns of the daily aggregated graphs
between weekdays and weekends (see the SocioPatterns poster in appendix). This project will
attempt to apply the topological methods on an empirical dataset to try to detect periodicity.
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7.2 Computational environment

The analysis pipeline described in section 6.2 is entirely implemented in Python. For these tests,
we use Python 3.5, with Numpy 1.15.1. The library Dionysus 2.0.7 [46] is used for persistent
homology, zigzag persistence, and bottleneck distance. Networks are handled by igraph 0.7.1,
and machine-learning algorithms are provided by Scikit-Learn 0.19.2 [54].

The program runs on a shared-memory system with 32 cores of 3.6 GHz, 756 GB of RAM,
and 1.6 TB of storage. It runs Ubuntu Linux 16.04.5. Dionysus was compiled from the latest
development version using GCC 5.4.0 with the optimization level -O3.

7.3 Results

7.3.1 Generative model

For this study, random networks have been generated with the following parameters (keeping
the notations from subsection 7.1.1):

• the base graph 𝐺 is an Erdős-Rényi graph with 40 nodes and an edge probability of 90%,
• the total time range 𝑇 for the sequence of times is 200,
• the frequency 𝑓 is 15/200.
Figure 7.3 shows the density and sample times for a single edge. A series of presence times

like this is generated for each edge in the base graph.
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Figure 7.3: Example of periodic density for edge times generation (blue), with random edge times
(red), and the sliding windows (grey).

The generated temporal network is then subdivided into 20 subnetworks. The sliding windows
are also represented on Figure 7.3.

From these subnetworks, persistence is computed, in the form of persistence diagrams. An
example can be found in Figure 7.4.

Figure 7.5 represents the output of hierarchical clustering for a random network, with zigzag
and WRCF persistence, and the sliced Wasserstein kernel and the bottleneck distance. This
clustering is representative of what is obtained by applying the same pipelines to many temporal
networks generated by the random model of subsection 7.1.1.
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Figure 7.4: Example persistence diagram.
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(a) Zigzag persistence, sliced Wasserstein kernel
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(b) WRCF, sliced Wasserstein kernel
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(c) Zigzag persistence, bottleneck distance
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(d) WRCF, bottleneck distance

Figure 7.5: Hierarchical clustering with 10 clusters of a random temporal network.

As we can see on the figure, the hierarchical clustering algorithm is able to determine the
periodicity of the temporal networks when using the sliced Wasserstein kernel. However, with
the simple bottleneck distance, the periodicity is not correctly detected. The periodicity detection
can be confirmed by moving further up in the dendrogram of the clustering algorithm. With only
2 or 3 clusters, the low and high sections of the density (Figure 7.3) are still accurately classified
with the sliced Wasserstein kernel, while the subnetworks are distributed randomly among the
clusters with the bottleneck distance.
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Somewhat less clear is the comparison between zigzag persistence and WRCF persistence.
When generating many samples from the random temporal network model, WRCF and sliced
Wasserstein kernel clustering is noisier and less consistent in its periodicity detection than its
zigzag persistence counterpart. This indicates that the aggregation of the temporal subnetworks
lead to the creation of artificial topological features that introduce noise in the dataset. (See sub-
subsection 6.2.4.2 for details on why aggregation introduce artificial simplices in the temporal
network.)

7.3.2 SocioPatterns dataset
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(a) Zigzag persistence, sliced Wasserstein kernel
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(b) WRCF, sliced Wasserstein kernel

Figure 7.6: Hierarchical clustering with 10 clusters of the SocioPatterns dataset.

In the study of the SocioPatterns dataset, we expect to uncover a periodicity on a scale of a day.
Therefore, we would like to partition the time range of the dataset into windows approximately
the length of a day. However, this leads to very sparse subnetworks, which do not exhibit enough
topological features for a complete study. Since the main periodicity in the dataset is expected to
be a weekday/weekend succession, we choose a resolution of two days.

The previous section has demonstrated that the sliced Wasserstein kernel was the most
suitable to uncover periodicity in a temporal network. The results, with zigzag persistence and
WRCF, of the hierarchical clustering algorithm are shown in Figure 7.6.
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Figure 7.7: Gram matrices of the sliced Wasserstein kernel with zigzag persistence.

However, the subnetworks do not cluster periodically in either case. This is confirmed
by visualizing the Gram matrix of the sliced Wasserstein kernel (Figure 7.7). The Gram matrix
obtained with the generative model exhibit a cyclical pattern, while the one from the SocioPatterns
dataset do not show enough distinctions between the subnetworks.

It is unclear whether this is due to the analysis pipeline, or to the temporal network itself not
exhibiting enough periodicity on a topological level. To confirm this, one would need to compare
our analysis with one using traditional network statistics, such as the ones in [3, 4, 29, 37]. Other
empirical networks, such as telecommunication networks, may also exhibit more obvious cyclical
patterns, where topological features might be useful.
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8 Conclusions

8.1 Topological data analysis of temporal networks

Periodicity detection on our generative model has proven successful. More importantly, topolo-
gical features and persistent homology seem to play an important part in the classification task.
The general idea of partitioning the time range of a temporal network into sliding windows, and
running an unsupervised clustering algorithm, works in the context of periodicity detection.

More generally, we have introduced persistent homology and topological data analysis meth-
ods for the study of temporal networks. Building on previous work clustering different temporal
network generative models with persistent homology [61], we have expanded both the methods
used and the applications, solving the real-world problem of periodicity detection. All in all, it is
clear that persistent homology is a promising new direction for the study of temporal networks.

Topological data analysis is a recent field, with new methods and approaches being constantly
developed and improved. In this project, we have compared different approaches. In the context
of periodicity detection, zigzag persistence is a small improvement over the topological analysis
of aggregated graphs using weight rank clique filtration. If this result was confirmed by other
studies, it would be an interesting development, as it would imply that the temporal aspect is
essential and cannot be discarded easily when studying temporal networks.

One of the most active research areas of topological data analysis has been its applications
in machine learning. Considerable efforts have been deployed in the development of various
vectorization techniques to embed topological information into a feature space suitable for
statistical learning algorithms. In this project, a few of these methods have been compared
for their theoretical guarantees, and their practical applications in periodicity detection. From
a mathematical point of view, kernels seem the most promising approach, by offering strong
stability properties and algebraic structures on the feature space. This development leads to a
broader class of applications in machine learning where topological analysis can be useful. These
theoretical advances have translated into much better results for periodicity detection. The simple
bottleneck distance in the space of diagram (with a structure of metric space) was not able to
determine any kind of periodicity in the random networks, whereas the sliced Wasserstein kernel
(embedding persistence diagrams in its RKHS, with an metric equivalent to the distance in the
space of persistence diagrams) picked up the period accurately. This confirms previous work
on shape classification, where kernels on persistence diagrams significantly outperformed other
feature embeddings [15, 42, 63].

Finally, we have tried to apply the same analysis to detect periodicity on real-world data, the
SocioPatterns dataset. Our model was not able to detect a periodicity with a change of patterns
between the weekdays and the weekends. This is unclear whether it is due to the limits in some
part of our analysis pipeline, or to the periodicity in the network being non-topological in nature.
A future study might focus on combining topological features with traditional network statistics.
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8.2 Future work

Further study of topological features of temporal networks is needed. We could imagine other
applications than periodicity detection, such as community detection [26]. Many standard
methods are difficult to adapt to temporal network models, and computational topology could
bring an additional perspective in these tasks, by complementing traditional network statistics.

In the specific context of periodicity detection, this analysis can be expanded by varying the
parameters such as the resolution and the overlap. It could be especially useful for inferring the
period in a temporal network.

One should also explore the other vectorizationmethods in the context of periodicity detection.
It would be interesting to know how persistence images, or the other kernels, perform in this
task. Last but not least, it is essential to compare the performance of the topological features with
more traditional network statistics. It would also be interesting to combine both aspects and use
both set of features in machine-learning tasks.

Finally, temporal networks seem to be the ideal context to apply multidimensional persistence.
For instance, the weight rank clique filtration adds a “weight” dimension to the existing time
dimension. In theory, it would be possible to use this by constructing a 2-parameter filtration on
the network, and computing persistence on it.
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A Topology

In the following chapter, we recall a few essential definitions in topology. This is in large part
taken from [27].

In this chapter, all vector spaces will be over a field 𝕂, which is either the field of real numbers
ℝ or the field of complex numbers ℂ.

A.1 Metric spaces

Definition A.1 (Distance, metric space). An application 𝑑 ∶ 𝑋 × 𝑋 ↦ ℝ+ is a distance over 𝑋 if
(i) ∀𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦 (separation),
(ii) ∀𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry),
(iii) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧) (triangle inequality).

In this case, (𝑋, 𝑑) is called a metric space.

If 𝑌 is a subset of 𝑋 and 𝑋 is a metric space (with the distance 𝑑), then (𝑌 , 𝑑) is immediately
a metric space itself. 𝑑𝑌 is called the induced metric on 𝑌.

If (𝑋, 𝑑) is metric space, then for all 𝑥 ∈ 𝑋 and 𝑟 > 0, the set

𝐵(𝑥, 𝑟) ∶= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) < 𝑟}

is called the open ball centered at 𝑥 and of radius 𝑟. The closed ball centered at 𝑥 and of radius 𝑟
is defined by

𝐵𝑐(𝑥, 𝑟) ∶= {𝑦 ∈ 𝑋 ∶ 𝑑(𝑥, 𝑦) ≤ 𝑟}.

An important class of metric spaces is the one where the set 𝑋 is itself a normed vector space.

Definition A.2 (Norm). Let 𝑉 be a vector space over 𝕂. An application 𝑁 ∶ 𝑉 ↦ ℝ+ is a norm
over 𝑉 if
(i) ∀𝑥 ∈ 𝑉 , 𝑁(𝑥) = 0 ⇔ 𝑥 = 0,
(ii) ∀𝑥 ∈ 𝑉 , ∀𝜆 ∈ 𝕂, 𝑁(𝜆𝑥) = |𝜆|𝑁(𝑥),
(iii) ∀𝑥, 𝑦 ∈ 𝑉 , 𝑁(𝑥) + 𝑁(𝑦) ≥ 𝑁(𝑥 + 𝑌 ).

Let (𝑉 , 𝑁) be a normed vector space. For every subset 𝑋 of 𝑉, one can define 𝑑(𝑥, 𝑦) ∶=
𝑁(𝑥 − 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Using the properties of the norm 𝑁, one can check easily that 𝑑 is a
distance, and therefore (𝑋, 𝑑) is a metric space.

There are many norms possible on a vector space. This brings the need to compare these
various norms.

Definition A.3 (Norm equivalence). Let 𝑉 be a vector space. Two norms 𝑁1 and 𝑁2 on 𝑉 are
said to be equivalent if there are two constants 𝐶1 and 𝐶2 such that

∀𝑥 ∈ 𝑉 , 𝑁1(𝑥) ≤ 𝐶1𝑁2(𝑥) and 𝑁2(𝑥) ≤ 𝐶2𝑁1(𝑥).

Geometrically speaking, two norms are equivalent if the unit ball for the norm 𝑁1 contains a
non-empty ball centred at 0 for the norm 𝑁2, and vice-versa.
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A.2 Completeness

Definition A.4 (Convergence). A sequence (𝑥𝑛)𝑛∈ℕ of elements of a metric space (𝑋, 𝑑) con-
verges to a limit 𝑥 if

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = 0.

Definition A.5 (Cauchy sequence). A sequence (𝑥𝑛)𝑛∈ℕ of elements of a metric space (𝑋, 𝑑) is
a Cauchy sequence if

∀𝜀 > 0, ∃𝑛0 ∈ ℕ, such that: ∀𝑛, 𝑚 ≥ 𝑛0, 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀.

Note that every convergent sequence is a Cauchy sequence, but the opposite is not true in
general.

Definition A.6 (Completeness). A metric space (𝑋, 𝑑) is complete if, and only if, every Cauchy
sequence converges to an element of 𝑋.

Definition A.7 (Banach space). A Banach space is a complete normed vector space.

A.3 Hilbert spaces

In this section, vector spaces are defined over ℂ. The theory extends easily to vector spaces
over ℝ.

An application 𝐿 between two ℂ-vector spaces 𝑉 and 𝑊 is said to be anti-linear if

∀𝜆, 𝜇 ∈ ℂ, ∀𝑥, 𝑦 ∈ 𝑉 , 𝐿(𝜆𝑥 + 𝜇𝑦) = �̄�𝐿(𝑥) + ̄𝜇𝑦.

Definition A.8 (Hermitian product). An application ⟨⋅, ⋅⟩ ∶ 𝑉 × 𝑉 ↦ ℂ is
(i) a sesquilinear form if 𝑥 ↦ ⟨𝑥, 𝑦⟩ is linear and 𝑦 ↦ ⟨𝑥, 𝑦⟩ is anti-linear,
(ii) a Hermitian form if it is sesquilinear and ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩ for all 𝑥, 𝑦 ∈ 𝑉,
(iii) a Hermitian product if it is a Hermitian form positive definite, i.e. if ⟨𝑥, 𝑥⟩ > 0 for all 𝑥 ≠ 0.

Remark. In the case of vector spaces over ℝ, sesquilinear forms are simply bilinear, Hermitian
forms are symmetric bilinear, and Hermitian products are inner products.

Proposition A.1 (Cauchy-Schwartz inequality). Let ⟨⋅, ⋅⟩ be a Hermitian product over 𝑉. Then,
for all 𝑥, 𝑦 ∈ 𝑉,

|⟨𝑥, 𝑦⟩| ≤ √⟨𝑥, 𝑥⟩√⟨𝑦, 𝑦⟩,

where the two sides are equal if and only if 𝑥 and 𝑦 are linearly dependent.

Proof. Suppose that 𝑥 ≠ 0 and 𝑦 ≠ 0 (otherwise the proposition is obvious). For all 𝑡 > 0, we
compute

⟨𝑥 − 𝑡𝑦, 𝑥 − 𝑡𝑦⟩ = ⟨𝑥, 𝑥⟩ − 2𝑡Re⟨𝑥, 𝑦⟩ + 𝑡2⟨𝑦, 𝑦⟩ ≥ 0.

Thus, for all 𝑡 > 0,
2Re⟨𝑥, 𝑦⟩ ≤ 1

𝑡
⟨𝑥, 𝑥⟩ + 𝑡⟨𝑦, 𝑦⟩.

We minimize the right-hand side by choosing

𝑡 = √⟨𝑥, 𝑥⟩
⟨𝑦, 𝑦⟩

,
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thus
Re⟨𝑥, 𝑦⟩ ≤ √⟨𝑥, 𝑥⟩√⟨𝑦, 𝑦⟩.

The inequality follows by replacing 𝑥 by 𝑒𝑖𝜃𝑥 and using the fact that

∀𝑧 ∈ ℂ, |𝑧| = sup
𝜃∈ℝ

Re (𝑒𝑖𝜃𝑧) .

The equality case follows from setting ⟨𝑥 − 𝑡𝑦, 𝑥 − 𝑡𝑦⟩ = 0.

If ⟨⋅, ⋅⟩ is a Hermitian product over 𝑉, it can be verified easily that the form

‖⋅‖ ∶ 𝑥 ↦ √⟨𝑥, 𝑥⟩

is a norm over 𝑉. The triangle inequality comes from the Cauchy-Schwartz formula.

Definition A.9 (Pre-Hilbert space). A pre-Hilbert space is a vector space 𝑉 with a Hermitian
product ⟨⋅, ⋅⟩ and the associated norm ‖⋅‖. It is a metric space for the distance 𝑑(𝑥, 𝑦) ∶= ‖𝑥 − 𝑦‖.

Definition A.10 (Hilbert space). A pre-Hilbert space 𝐻 is a Hilbert space if (𝐻, ‖⋅‖) is a Banach
space.
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C Code

C.1 zigzag.py

#!/usr/bin/env python3

import numpy as np

import igraph as ig

5 import dionysus as d

def sliding_windows(g, res=0.1, overlap=0):

"""Compute subnetworks of a temporal network based on temporal

10 partitioning of the time range.

:param g: igraph Graph

:param res: resolution

:param overlap: overlap

15
:return: a list of temporal networks.

"""

times = np.array(g.es["time"])

duration = res * (times.max() - times.min())

20 windows = []

for i in range(int(1/res)):

edges = g.es.select(time_gt=times.min() + duration*i,

time_lt=times.min() + duration*(i+1))

windows.append(g.subgraph_edges(edges))

25 return windows

def max_simplicial_complex(g):

"""Return the maximal simplicial complex of a network g.

30 """

return d.Filtration(g.maximal_cliques())

def find_transitions(a):

35 """Find the transition times in an array of presence times.

"""

res = []

prev = False

for i, cur in enumerate(a):

40 if cur != prev:

res.append(i)

prev = cur

return res

45
def presence_times(g):

"""Compute the data required to compute zigzag persistence:

simplicial complex and transition times.
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50 :param g: igraph Graph

:return: a tuple with the maximum simplicial complex and the

transition times of each simplex.

"""

55 max_simplicial_complex = d.Filtration(g.cliques())

filts = []

for t in np.sort(np.unique(g.es["time"])):

edges = g.es.select(time_eq=t)

cliques = g.subgraph_edges(edges).cliques()

60 filts.append(d.Filtration(cliques))

presences = [[s in filt for filt in filts] for s in max_simplicial_complex]

presences = [find_transitions(p) for p in presences]

return (max_simplicial_complex, presences)

65
def zigzag_network(g):

"""Compute zigzag persistence on a temporal network.

:param g: igraph Graph

70
:return: a list of persistence diagrams.

"""

(f, t) = presence_times(g)

_, dgms, _ = d.zigzag_homology_persistence(f, t)

75 return dgms

C.2 wrcf.py

#!/usr/bin/env python3

import numpy as np

import igraph as ig

5 import dionysus as d

def wrcf(G, weight="weight"):

"""Compute the weight-rank clique filtration (WRCF) of a graph.

10
:param G: igraph Graph

:param weight: name of the weight attribute

:return: a Dionysus filtration.

15 """

# Define filtration step 0 as the set of all nodes

filt = d.Filtration()

for v in G.vs:

filt.append(d.Simplex([v.index], 0))

20 # Rank all edge weights

distinct_weights = np.unique(G.es[weight])[::-1]

for t, w in enumerate(distinct_weights):

# At filtration step t, threshold the graph at weight[t]

subg = G.subgraph_edges(G.es(lambda e: e[weight] >= w))

25 # Find all maximal cliques and define them to be simplices

for clique in subg.maximal_cliques():

for s in d.closure([d.Simplex(clique)], len(clique)):

filt.append(d.Simplex(s, t+1))

filt.sort()

30 return(filt)
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def wrcf_diagram(graph, weight="weight"):

"""Compute persistence diagrams of a graph using WRCF.

35
:param graph: igraph Graph

:param weight: name of the weight attribute

:return: a list of persistence diagrams.

40 """

filt = wrcf(graph, weight=weight)

pers = d.homology_persistence(filt)

dgms = d.init_diagrams(pers, filt)

return dgms

C.3 sliced_wasserstein.py

import numpy as np

import dionysus as d

5 def diagram_array(dgm):

"""Convert a Dionysus diagram to a Numpy array.

:param dgm: Dionysus Diagram

10 :return: a Numpy array of tuples representing the points in the

diagram.

"""

res = []

for p in dgm:

15 if p.death != np.inf:

res.append([p.birth, p.death])

return np.array(res)

20 def SW_approx(dgm1, dgm2, M):

"""Approximate computation of the Sliced Wasserstein kernel.

:param dgm1: first Diagram

:param dgm2: second Diagram

25 :param M int: number of directions

:return: The approximate value of the Sliced Wasserstein kernel of

dgm1 and dgm2, sampled over M dimensions.

"""

30 dgm1 = diagram_array(dgm1)

dgm2 = diagram_array(dgm2)

if dgm1.size == 0 or dgm2.size == 0:

return 0

# Add \pi_\delta(dgm1) to dgm2 and vice-versa

35 proj1 = dgm1.dot([1, 1])/np.sqrt(2)

proj2 = dgm2.dot([1, 1])/np.sqrt(2)

dgm1 = np.vstack((dgm1, np.vstack((proj2, proj2)).T))

dgm2 = np.vstack((dgm2, np.vstack((proj1, proj1)).T))

SW = 0

40 theta = -np.pi/2

s = np.pi/M

for i in range(M):

# Project each diagram on the direction theta
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vec = [1, np.arctan(theta)]

45 vec = vec / np.linalg.norm(vec)

V1 = dgm1.dot(vec)

V2 = dgm2.dot(vec)

# Sort the projections

V1.sort()

50 V2.sort()

# l1-distance between the projections

SW = SW + s * np.sum(np.abs(V1 - V2))

theta = theta + s

return 1/np.pi * SW

C.4 generative.py

#!/usr/bin/env python3

import numpy as np

import igraph as ig

5 import dionysus as d

import multiprocessing

# from dask.distributed import Client

10 from zigzag import sliding_windows, zigzag_network

from wrcf import wrcf_diagram

from sliced_wasserstein import diagram_array, SW_approx

import dill

15

def random_edge_presences(T, f):

"""Generate random times sampled over a periodic distribution.

20 :param T: time range

:param f: frequency

:return: an array of times.

"""

25 density = np.sin(f * np.arange(T)) + 1

density /= np.sum(density)

samplesize = np.random.randint(T//2)

times = np.random.choice(np.arange(T), size=samplesize, replace=False, p=density)

times = np.sort(times)

30 return times

def remove_inf(dgm):

"""Remove infinite points in a persistence diagram.

35
:param dgm: Diagram

:return: the same diagram without the infinite points.

"""

40 res = d.Diagram()

for p in dgm:

if p.death != np.inf:

res.append(p)

return res

45
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## Global parameters

NODES = 40

EDGE_PROB = 0.9

50 TIME_RANGE = 200

FREQ = 15/TIME_RANGE

N_WINDOWS = 20

## Computations

55 ZIGZAG_PERS = True

WRCF_PERS = True

SW_KERNEL = True

BOTTLENECK_DIST = True

60
if __name__=="__main__":

print("Generating random temporal network...", end="", flush=True)

basegraph = ig.Graph.Erdos_Renyi(NODES, EDGE_PROB)

g = ig.Graph()

65 g.add_vertices(len(basegraph.vs))

for e in basegraph.es:

times = random_edge_presences(TIME_RANGE, FREQ)

for t in times:

g.add_edge(e.source, e.target, time=t)

70 print("done.")

print("Temporal partitioning...", end="", flush=True)

wins = sliding_windows(g, 1/N_WINDOWS)

print("done.")

75
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())

if ZIGZAG_PERS:

print("Zigzag persistence...", end="", flush=True)

80 zz_dgms = pool.map(zigzag_network, wins)

dill.dump(zz_dgms, open("generative/zz_dgms.dill", "wb"))

print("done, saved.")

if WRCF_PERS:

85 print("WRCF...", end="", flush=True)

## Collapse each subnetwork into a static graph: the weight is the

## number of appearances of each edge

for w in wins:

w.es["time"] = np.repeat(1, len(w.es["time"]))

90 w.simplify(combine_edges="sum")

w.es["weight"] = w.es["time"]

del w.es["time"]

wrcf_dgms = pool.map(wrcf_diagram, wins)

dill.dump(wrcf_dgms, open("generative/wrcf_dgms.dill", "wb"))

95 print("done.")

pool.terminate()

if ZIGZAG_PERS and SW_KERNEL:

100 print("Sliced Wasserstein Kernel (zigzag)...", end="", flush=True)

zz_dgms1 = [dgm[1] for dgm in zz_dgms if len(dgm) > 1]

zz_gram1 = np.array([[SW_approx(zz_dgms1[i], zz_dgms1[j], 10)

for i in range(len(zz_dgms1))] for j in range(len(zz_dgms1))])

dill.dump(zz_gram1, open("generative/zz_gram1.dill", "wb"))

105 print("done, saved.")

if WRCF_PERS and SW_KERNEL:

print("Sliced Wasserstein Kernel (WRCF)...", end="", flush=True)
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wrcf_dgms1 = [dgm[1] for dgm in wrcf_dgms if len(dgm) > 1]

wrcf_gram1 = np.array([[SW_approx(wrcf_dgms1[i], wrcf_dgms1[j], 10)

110 for i in range(len(wrcf_dgms1))] for j in range(len(wrcf_dgms1))])

dill.dump(wrcf_gram1, open("generative/wrcf_gram1.dill", "wb"))

print("done, saved.")

if ZIGZAG_PERS and BOTTLENECK_DIST:

115 print("Bottleneck distance (zigzag)...", end="", flush=True)

zz_dgms1 = list(map(remove_inf, zz_dgms1))

zz_distmat = np.array([[d.bottleneck_distance(zz_dgms1[i], zz_dgms1[j])

for i in range(len(zz_dgms1))] for j in range(len(zz_dgms1))])

dill.dump(zz_distmat, open("generative/zz_distmat.dill", "wb"))

120 print("done, saved.")

if WRCF_PERS and BOTTLENECK_DIST:

print("Bottleneck distance (WRCF)...", end="", flush=True)

wrcf_dgms1 = list(map(remove_inf, wrcf_dgms1))

wrcf_distmat = np.array([[d.bottleneck_distance(wrcf_dgms1[i], wrcf_dgms1[j])

125 for i in range(len(wrcf_dgms1))] for j in range(len(wrcf_dgms1))])

dill.dump(wrcf_distmat, open("generative/wrcf_distmat.dill", "wb"))

print("done, saved.")

C.5 sociopatterns.py

#!/usr/bin/env python3

import numpy as np

import igraph as ig

5 import dionysus as d

import multiprocessing

# from dask.distributed import Client

10 from zigzag import sliding_windows, zigzag_network

from wrcf import wrcf_diagram

from sliced_wasserstein import diagram_array, SW_approx

import dill

15

def remove_inf(dgm):

"""Remove infinite points in a persistence diagram.

20 :param dgm: Diagram

:return: the same diagram without the infinite points.

"""

res = d.Diagram()

25 for p in dgm:

if p.death != np.inf:

res.append(p)

return res

30
## Global parameters

N_WINDOWS = 40

## Computations

35 ZIGZAG_PERS = True

WRCF_PERS = True

SW_KERNEL = True
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BOTTLENECK_DIST = True

40
if __name__=="__main__":

print("Loading SocioPatterns dataset...", end="", flush=True)

g = ig.read("data/sociopatterns/infectious/infectious.graphml")

del g.es["id"]

45 # print(g.summary())

print("done.")

print("Temporal partitioning...", end="", flush=True)

wins = sliding_windows(g, 1/N_WINDOWS)

50 print("done.")

pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())

if ZIGZAG_PERS:

55 print("Zigzag persistence...", end="", flush=True)

zz_dgms = pool.map(zigzag_network, wins)

dill.dump(zz_dgms, open("sociopatterns/zz_dgms.dill", "wb"))

print("done, saved.")

60 if WRCF_PERS:

print("WRCF...", end="", flush=True)

## Collapse each subnetwork into a static graph: the weight is the

## number of appearances of each edge

for w in wins:

65 w.es["time"] = np.repeat(1, len(w.es["time"]))

w.simplify(combine_edges="sum")

w.es["weight"] = w.es["time"]

del w.es["time"]

wrcf_dgms = pool.map(wrcf_diagram, wins)

70 dill.dump(wrcf_dgms, open("sociopatterns/wrcf_dgms.dill", "wb"))

print("done.")

pool.terminate()

75 if ZIGZAG_PERS and SW_KERNEL:

print("Sliced Wasserstein Kernel (zigzag)...", end="", flush=True)

zz_dgms1 = [dgm[1] for dgm in zz_dgms if len(dgm) > 1]

zz_gram1 = np.array([[SW_approx(zz_dgms1[i], zz_dgms1[j], 10)

for i in range(len(zz_dgms1))] for j in range(len(zz_dgms1))])

80 dill.dump(zz_gram1, open("sociopatterns/zz_gram1.dill", "wb"))

print("done, saved.")

if WRCF_PERS and SW_KERNEL:

print("Sliced Wasserstein Kernel (WRCF)...", end="", flush=True)

wrcf_dgms1 = [dgm[1] for dgm in wrcf_dgms if len(dgm) > 1]

85 wrcf_gram1 = np.array([[SW_approx(wrcf_dgms1[i], wrcf_dgms1[j], 10)

for i in range(len(wrcf_dgms1))] for j in range(len(wrcf_dgms1))])

dill.dump(wrcf_gram1, open("sociopatterns/wrcf_gram1.dill", "wb"))

print("done, saved.")

90 if ZIGZAG_PERS and BOTTLENECK_DIST:

print("Bottleneck distance (zigzag)...", end="", flush=True)

zz_dgms1 = list(map(remove_inf, zz_dgms1))

zz_distmat = np.array([[d.bottleneck_distance(zz_dgms1[i], zz_dgms1[j])

for i in range(len(zz_dgms1))] for j in range(len(zz_dgms1))])

95 dill.dump(zz_distmat, open("sociopatterns/zz_distmat.dill", "wb"))

print("done, saved.")

if WRCF_PERS and BOTTLENECK_DIST:

print("Bottleneck distance (WRCF)...", end="", flush=True)
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wrcf_dgms1 = list(map(remove_inf, wrcf_dgms1))

100 wrcf_distmat = np.array([[d.bottleneck_distance(wrcf_dgms1[i], wrcf_dgms1[j])

for i in range(len(wrcf_dgms1))] for j in range(len(wrcf_dgms1))])

dill.dump(wrcf_distmat, open("sociopatterns/wrcf_distmat.dill", "wb"))

print("done, saved.")

C.6 clustering.py

#!/usr/bin/env python3

import numpy as np

5 from sklearn.cluster import AgglomerativeClustering

from sklearn.svm import OneClassSVM

import dill

10 import matplotlib

matplotlib.use("PDF")

import matplotlib.pyplot as plt

plt.style.use("fivethirtyeight")

plt.rcParams["figure.figsize"] = (10, 6)

15

N_CLUSTERS = 10

GENERATIVE = True

20 SOCIOPATTERNS = True

if __name__=="__main__":

if GENERATIVE:

print("==== Generative model ====")

25 zz_dgms = dill.load(open("generative/zz_dgms.dill", "rb"))

wrcf_dgms = dill.load(open("generative/wrcf_dgms.dill", "rb"))

zz_gram1 = dill.load(open("generative/zz_gram1.dill", "rb"))

wrcf_gram1 = dill.load(open("generative/wrcf_gram1.dill", "rb"))

zz_distmat = dill.load(open("generative/zz_distmat.dill", "rb"))

30 wrcf_distmat = dill.load(open("generative/wrcf_distmat.dill", "rb"))

print("Zigzag + kernel")

clf = AgglomerativeClustering(

n_clusters=N_CLUSTERS, affinity='precomputed', linkage='average')

35 clf.fit(zz_gram1)

fig, ax = plt.subplots()

ax.step(range(len(clf.labels_)), clf.labels_, where='post')

ax.set_xlabel("Subnetwork")

ax.set_ylabel("Cluster")

40 fig.savefig("fig/gen_zz_k.pdf", transparent=True,

pad_inches=0.3, bbox_inches="tight")

print("WRCF + kernel")

clf = AgglomerativeClustering(

45 n_clusters=N_CLUSTERS, affinity='precomputed', linkage='average')

clf.fit(wrcf_gram1)

fig, ax = plt.subplots()

ax.step(range(len(clf.labels_)), clf.labels_, where='post')

ax.set_xlabel("Subnetwork")

50 ax.set_ylabel("Cluster")

fig.savefig("fig/gen_wrcf_k.pdf", transparent=True,

pad_inches=0.3, bbox_inches="tight")
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print("Zigzag + bottleneck")

55 clf = AgglomerativeClustering(

n_clusters=N_CLUSTERS, affinity='precomputed', linkage='average')

clf.fit(zz_distmat)

fig, ax = plt.subplots()

ax.step(range(len(clf.labels_)), clf.labels_, where='post')

60 ax.set_xlabel("Subnetwork")

ax.set_ylabel("Cluster")

fig.savefig("fig/gen_zz_b.pdf", transparent=True,

pad_inches=0.3, bbox_inches="tight")

65 print("WRCF + bottleneck")

clf = AgglomerativeClustering(

n_clusters=N_CLUSTERS, affinity='precomputed', linkage='average')

clf.fit(wrcf_distmat)

fig, ax = plt.subplots()

70 ax.step(range(len(clf.labels_)), clf.labels_, where='post')

ax.set_xlabel("Subnetwork")

ax.set_ylabel("Cluster")

fig.savefig("fig/gen_wrcf_b.pdf", transparent=True,

pad_inches=0.3, bbox_inches="tight")

75
if SOCIOPATTERNS:

print("==== SocioPatterns dataset ====")

zz_dgms = dill.load(open("sociopatterns/zz_dgms.dill", "rb"))

wrcf_dgms = dill.load(open("sociopatterns/wrcf_dgms.dill", "rb"))

80 zz_gram1 = dill.load(open("sociopatterns/zz_gram1.dill", "rb"))

wrcf_gram1 = dill.load(open("sociopatterns/wrcf_gram1.dill", "rb"))

zz_distmat = dill.load(open("sociopatterns/zz_distmat.dill", "rb"))

wrcf_distmat = dill.load(open("sociopatterns/wrcf_distmat.dill", "rb"))

85 print("Zigzag + kernel")

clf = AgglomerativeClustering(n_clusters=N_CLUSTERS, affinity='precomputed', linkage='average')

clf.fit(zz_gram1)

fig, ax = plt.subplots()

ax.step(range(len(clf.labels_)), clf.labels_, where='post')

90 ax.set_xlabel("Subnetwork")

ax.set_ylabel("Cluster")

fig.savefig("fig/sp_zz_k.pdf", transparent=True, pad_inches=0.3, bbox_inches="tight")

print("WRCF + kernel")

95 clf = AgglomerativeClustering(n_clusters=N_CLUSTERS, affinity='precomputed', linkage='average')

clf.fit(wrcf_gram1)

fig, ax = plt.subplots()

ax.step(range(len(clf.labels_)), clf.labels_, where='post')

ax.set_xlabel("Subnetwork")

100 ax.set_ylabel("Cluster")

fig.savefig("fig/sp_wrcf_k.pdf", transparent=True, pad_inches=0.3, bbox_inches="tight")

print("Zigzag + bottleneck")

clf = AgglomerativeClustering(n_clusters=N_CLUSTERS, affinity='precomputed', linkage='average')

105 clf.fit(zz_distmat)

fig, ax = plt.subplots()

ax.step(range(len(clf.labels_)), clf.labels_, where='post')

ax.set_xlabel("Subnetwork")

ax.set_ylabel("Cluster")

110 fig.savefig("fig/sp_zz_b.pdf", transparent=True, pad_inches=0.3, bbox_inches="tight")

print("WRCF + bottleneck")

clf = AgglomerativeClustering(n_clusters=N_CLUSTERS, affinity='precomputed', linkage='average')
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clf.fit(wrcf_distmat)

115 fig, ax = plt.subplots()

ax.step(range(len(clf.labels_)), clf.labels_, where='post')

ax.set_xlabel("Subnetwork")

ax.set_ylabel("Cluster")

fig.savefig("fig/sp_wrcf_b.pdf", transparent=True, pad_inches=0.3, bbox_inches="tight")
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