Resize and compress image
This commit is contained in:
parent
cb33249e0c
commit
70d0740a66
7 changed files with 4 additions and 4 deletions
|
@ -66,7 +66,7 @@ W_1(p, q) = \min_{P \in \mathbb{R}_+^{n\times m}} \sum_{i,j} C_{i,j} P_{i,j}
|
||||||
<p>The first one can be precomputed once for all subsequent distances, so it is invariable in the number of documents we have to process. The second one only operates on <span class="math inline">\(\lvert T \rvert\)</span> topics instead of the full vocabulary: the resulting optimisation problem is much smaller! This is great for performance, as it should be easy now to compute all pairwise distances in a large set of documents.</p>
|
<p>The first one can be precomputed once for all subsequent distances, so it is invariable in the number of documents we have to process. The second one only operates on <span class="math inline">\(\lvert T \rvert\)</span> topics instead of the full vocabulary: the resulting optimisation problem is much smaller! This is great for performance, as it should be easy now to compute all pairwise distances in a large set of documents.</p>
|
||||||
<p>Another interesting insight is that topics are represented as collections of words (we can keep the top 20 as a visual representations), and documents as collections of topics with weights. Both of these representations are highly interpretable for a human being who wants to understand what’s going on. I think this is one of the strongest aspects of these approaches: both the various representations and the algorithms are fully interpretable. Compared to a deep learning approach, we can make sense of every intermediate step, from the representations of topics to the weights in the optimisation algorithm to compute higher-level distances.</p>
|
<p>Another interesting insight is that topics are represented as collections of words (we can keep the top 20 as a visual representations), and documents as collections of topics with weights. Both of these representations are highly interpretable for a human being who wants to understand what’s going on. I think this is one of the strongest aspects of these approaches: both the various representations and the algorithms are fully interpretable. Compared to a deep learning approach, we can make sense of every intermediate step, from the representations of topics to the weights in the optimisation algorithm to compute higher-level distances.</p>
|
||||||
<figure>
|
<figure>
|
||||||
<img src="/images/hott_fig1.png" alt="Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books (Yurochkin et al. 2019)." /><figcaption>Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books <span class="citation" data-cites="yurochkin2019_hierar_optim_trans_docum_repres">(Yurochkin et al. <a href="#ref-yurochkin2019_hierar_optim_trans_docum_repres">2019</a>)</span>.</figcaption>
|
<img src="/images/hott_fig1.jpg" alt="Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books (Yurochkin et al. 2019)." /><figcaption>Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books <span class="citation" data-cites="yurochkin2019_hierar_optim_trans_docum_repres">(Yurochkin et al. <a href="#ref-yurochkin2019_hierar_optim_trans_docum_repres">2019</a>)</span>.</figcaption>
|
||||||
</figure>
|
</figure>
|
||||||
<h1 id="experiments">Experiments</h1>
|
<h1 id="experiments">Experiments</h1>
|
||||||
<p>The paper is very complete regarding experiments, providing a full evaluation of the method on one particular application: document clustering. They use <a href="https://scikit-learn.org/stable/modules/decomposition.html#latentdirichletallocation">Latent Dirichlet Allocation</a> to compute topics and GloVe for pretrained word embeddings <span class="citation" data-cites="pennington2014_glove">(Pennington, Socher, and Manning <a href="#ref-pennington2014_glove">2014</a>)</span>, and <a href="https://www.gurobi.com/">Gurobi</a> to solve the optimisation problems. Their code is available <a href="https://github.com/IBM/HOTT">on GitHub</a>.</p>
|
<p>The paper is very complete regarding experiments, providing a full evaluation of the method on one particular application: document clustering. They use <a href="https://scikit-learn.org/stable/modules/decomposition.html#latentdirichletallocation">Latent Dirichlet Allocation</a> to compute topics and GloVe for pretrained word embeddings <span class="citation" data-cites="pennington2014_glove">(Pennington, Socher, and Manning <a href="#ref-pennington2014_glove">2014</a>)</span>, and <a href="https://www.gurobi.com/">Gurobi</a> to solve the optimisation problems. Their code is available <a href="https://github.com/IBM/HOTT">on GitHub</a>.</p>
|
||||||
|
|
BIN
_site/images/hott_fig1.jpg
Normal file
BIN
_site/images/hott_fig1.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 131 KiB |
|
@ -85,7 +85,7 @@ W_1(p, q) = \min_{P \in \mathbb{R}_+^{n\times m}} \sum_{i,j} C_{i,j} P_{i,j}
|
||||||
<p>The first one can be precomputed once for all subsequent distances, so it is invariable in the number of documents we have to process. The second one only operates on <span class="math inline">\(\lvert T \rvert\)</span> topics instead of the full vocabulary: the resulting optimisation problem is much smaller! This is great for performance, as it should be easy now to compute all pairwise distances in a large set of documents.</p>
|
<p>The first one can be precomputed once for all subsequent distances, so it is invariable in the number of documents we have to process. The second one only operates on <span class="math inline">\(\lvert T \rvert\)</span> topics instead of the full vocabulary: the resulting optimisation problem is much smaller! This is great for performance, as it should be easy now to compute all pairwise distances in a large set of documents.</p>
|
||||||
<p>Another interesting insight is that topics are represented as collections of words (we can keep the top 20 as a visual representations), and documents as collections of topics with weights. Both of these representations are highly interpretable for a human being who wants to understand what’s going on. I think this is one of the strongest aspects of these approaches: both the various representations and the algorithms are fully interpretable. Compared to a deep learning approach, we can make sense of every intermediate step, from the representations of topics to the weights in the optimisation algorithm to compute higher-level distances.</p>
|
<p>Another interesting insight is that topics are represented as collections of words (we can keep the top 20 as a visual representations), and documents as collections of topics with weights. Both of these representations are highly interpretable for a human being who wants to understand what’s going on. I think this is one of the strongest aspects of these approaches: both the various representations and the algorithms are fully interpretable. Compared to a deep learning approach, we can make sense of every intermediate step, from the representations of topics to the weights in the optimisation algorithm to compute higher-level distances.</p>
|
||||||
<figure>
|
<figure>
|
||||||
<img src="../images/hott_fig1.png" alt="Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books (Yurochkin et al. 2019)." /><figcaption>Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books <span class="citation" data-cites="yurochkin2019_hierar_optim_trans_docum_repres">(Yurochkin et al. <a href="#ref-yurochkin2019_hierar_optim_trans_docum_repres">2019</a>)</span>.</figcaption>
|
<img src="../images/hott_fig1.jpg" alt="Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books (Yurochkin et al. 2019)." /><figcaption>Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books <span class="citation" data-cites="yurochkin2019_hierar_optim_trans_docum_repres">(Yurochkin et al. <a href="#ref-yurochkin2019_hierar_optim_trans_docum_repres">2019</a>)</span>.</figcaption>
|
||||||
</figure>
|
</figure>
|
||||||
<h1 id="experiments">Experiments</h1>
|
<h1 id="experiments">Experiments</h1>
|
||||||
<p>The paper is very complete regarding experiments, providing a full evaluation of the method on one particular application: document clustering. They use <a href="https://scikit-learn.org/stable/modules/decomposition.html#latentdirichletallocation">Latent Dirichlet Allocation</a> to compute topics and GloVe for pretrained word embeddings <span class="citation" data-cites="pennington2014_glove">(Pennington, Socher, and Manning <a href="#ref-pennington2014_glove">2014</a>)</span>, and <a href="https://www.gurobi.com/">Gurobi</a> to solve the optimisation problems. Their code is available <a href="https://github.com/IBM/HOTT">on GitHub</a>.</p>
|
<p>The paper is very complete regarding experiments, providing a full evaluation of the method on one particular application: document clustering. They use <a href="https://scikit-learn.org/stable/modules/decomposition.html#latentdirichletallocation">Latent Dirichlet Allocation</a> to compute topics and GloVe for pretrained word embeddings <span class="citation" data-cites="pennington2014_glove">(Pennington, Socher, and Manning <a href="#ref-pennington2014_glove">2014</a>)</span>, and <a href="https://www.gurobi.com/">Gurobi</a> to solve the optimisation problems. Their code is available <a href="https://github.com/IBM/HOTT">on GitHub</a>.</p>
|
||||||
|
|
|
@ -62,7 +62,7 @@ W_1(p, q) = \min_{P \in \mathbb{R}_+^{n\times m}} \sum_{i,j} C_{i,j} P_{i,j}
|
||||||
<p>The first one can be precomputed once for all subsequent distances, so it is invariable in the number of documents we have to process. The second one only operates on <span class="math inline">\(\lvert T \rvert\)</span> topics instead of the full vocabulary: the resulting optimisation problem is much smaller! This is great for performance, as it should be easy now to compute all pairwise distances in a large set of documents.</p>
|
<p>The first one can be precomputed once for all subsequent distances, so it is invariable in the number of documents we have to process. The second one only operates on <span class="math inline">\(\lvert T \rvert\)</span> topics instead of the full vocabulary: the resulting optimisation problem is much smaller! This is great for performance, as it should be easy now to compute all pairwise distances in a large set of documents.</p>
|
||||||
<p>Another interesting insight is that topics are represented as collections of words (we can keep the top 20 as a visual representations), and documents as collections of topics with weights. Both of these representations are highly interpretable for a human being who wants to understand what’s going on. I think this is one of the strongest aspects of these approaches: both the various representations and the algorithms are fully interpretable. Compared to a deep learning approach, we can make sense of every intermediate step, from the representations of topics to the weights in the optimisation algorithm to compute higher-level distances.</p>
|
<p>Another interesting insight is that topics are represented as collections of words (we can keep the top 20 as a visual representations), and documents as collections of topics with weights. Both of these representations are highly interpretable for a human being who wants to understand what’s going on. I think this is one of the strongest aspects of these approaches: both the various representations and the algorithms are fully interpretable. Compared to a deep learning approach, we can make sense of every intermediate step, from the representations of topics to the weights in the optimisation algorithm to compute higher-level distances.</p>
|
||||||
<figure>
|
<figure>
|
||||||
<img src="/images/hott_fig1.png" alt="Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books (Yurochkin et al. 2019)." /><figcaption>Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books <span class="citation" data-cites="yurochkin2019_hierar_optim_trans_docum_repres">(Yurochkin et al. <a href="#ref-yurochkin2019_hierar_optim_trans_docum_repres">2019</a>)</span>.</figcaption>
|
<img src="/images/hott_fig1.jpg" alt="Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books (Yurochkin et al. 2019)." /><figcaption>Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books <span class="citation" data-cites="yurochkin2019_hierar_optim_trans_docum_repres">(Yurochkin et al. <a href="#ref-yurochkin2019_hierar_optim_trans_docum_repres">2019</a>)</span>.</figcaption>
|
||||||
</figure>
|
</figure>
|
||||||
<h1 id="experiments">Experiments</h1>
|
<h1 id="experiments">Experiments</h1>
|
||||||
<p>The paper is very complete regarding experiments, providing a full evaluation of the method on one particular application: document clustering. They use <a href="https://scikit-learn.org/stable/modules/decomposition.html#latentdirichletallocation">Latent Dirichlet Allocation</a> to compute topics and GloVe for pretrained word embeddings <span class="citation" data-cites="pennington2014_glove">(Pennington, Socher, and Manning <a href="#ref-pennington2014_glove">2014</a>)</span>, and <a href="https://www.gurobi.com/">Gurobi</a> to solve the optimisation problems. Their code is available <a href="https://github.com/IBM/HOTT">on GitHub</a>.</p>
|
<p>The paper is very complete regarding experiments, providing a full evaluation of the method on one particular application: document clustering. They use <a href="https://scikit-learn.org/stable/modules/decomposition.html#latentdirichletallocation">Latent Dirichlet Allocation</a> to compute topics and GloVe for pretrained word embeddings <span class="citation" data-cites="pennington2014_glove">(Pennington, Socher, and Manning <a href="#ref-pennington2014_glove">2014</a>)</span>, and <a href="https://www.gurobi.com/">Gurobi</a> to solve the optimisation problems. Their code is available <a href="https://github.com/IBM/HOTT">on GitHub</a>.</p>
|
||||||
|
|
BIN
images/hott_fig1.jpg
Normal file
BIN
images/hott_fig1.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 131 KiB |
Binary file not shown.
Before Width: | Height: | Size: 667 KiB |
|
@ -155,7 +155,7 @@ step, from the representations of topics to the weights in the
|
||||||
optimisation algorithm to compute higher-level distances.
|
optimisation algorithm to compute higher-level distances.
|
||||||
|
|
||||||
#+caption: Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books citep:yurochkin2019_hierar_optim_trans_docum_repres.
|
#+caption: Representation of two documents in topic space, along with how the distance was computed between them. Everything is interpretable: from the documents as collections of topics, to the matchings between topics determining the overall distance between the books citep:yurochkin2019_hierar_optim_trans_docum_repres.
|
||||||
[[file:/images/hott_fig1.png]]
|
[[file:/images/hott_fig1.jpg]]
|
||||||
|
|
||||||
* Experiments
|
* Experiments
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue