Random matrices and Ginibre ensemble
This commit is contained in:
parent
5edc5f3d29
commit
6b5d84844f
6 changed files with 140 additions and 0 deletions
|
@ -27,6 +27,10 @@
|
|||
Here you can find all my previous posts:
|
||||
<ul>
|
||||
|
||||
<li>
|
||||
<a href="./posts/ginibre-ensemble.html">Random matrices from the Ginibre ensemble</a> - March 20, 2019
|
||||
</li>
|
||||
|
||||
<li>
|
||||
<a href="./posts/peano.html">Peano Axioms</a> - March 18, 2019
|
||||
</li>
|
||||
|
|
BIN
_site/images/ginibre.png
Normal file
BIN
_site/images/ginibre.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
|
@ -71,6 +71,10 @@
|
|||
<h2>Recent Posts</h2>
|
||||
<ul>
|
||||
|
||||
<li>
|
||||
<a href="./posts/ginibre-ensemble.html">Random matrices from the Ginibre ensemble</a> - March 20, 2019
|
||||
</li>
|
||||
|
||||
<li>
|
||||
<a href="./posts/peano.html">Peano Axioms</a> - March 18, 2019
|
||||
</li>
|
||||
|
|
70
_site/posts/ginibre-ensemble.html
Normal file
70
_site/posts/ginibre-ensemble.html
Normal file
|
@ -0,0 +1,70 @@
|
|||
<!doctype html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<meta http-equiv="x-ua-compatible" content="ie=edge">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||||
<title>Dimitri Lozeve - Random matrices from the Ginibre ensemble</title>
|
||||
<link rel="stylesheet" href="../css/default.css" />
|
||||
<link rel="stylesheet" href="../css/syntax.css" />
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML" async></script>
|
||||
</head>
|
||||
<body>
|
||||
<header>
|
||||
<div class="logo">
|
||||
<a href="../">Dimitri Lozeve</a>
|
||||
</div>
|
||||
<nav>
|
||||
<a href="../">Home</a>
|
||||
<a href="../projects.html">Projects</a>
|
||||
<a href="../archive.html">Archive</a>
|
||||
<a href="../contact.html">Contact</a>
|
||||
</nav>
|
||||
</header>
|
||||
|
||||
<main role="main">
|
||||
<h1>Random matrices from the Ginibre ensemble</h1>
|
||||
<article>
|
||||
<section class="header">
|
||||
Posted on March 20, 2019
|
||||
|
||||
</section>
|
||||
<section>
|
||||
<h2 id="ginibre-ensemble-and-its-properties">Ginibre ensemble and its properties</h2>
|
||||
<p>The <em>Ginibre ensemble</em> is a set of random matrices with the entries chosen independently. Each entry of a <span class="math inline">\(n \times n\)</span> matrix is a complex number, with both the real and imaginary part sampled from a normal distribution of mean zero and variance <span class="math inline">\(1/2n\)</span>.</p>
|
||||
<p>Random matrices distributions are very complex and are a very active subject of research. I stumbled on this example while reading an article in <em>Notices of the AMS</em> by Brian C. Hall <a href="#ref-1">(1)</a>.</p>
|
||||
<p>Now what is interesting about these random matrices is the distribution of their <span class="math inline">\(n\)</span> eigenvalues in the complex plane.</p>
|
||||
<p>The <a href="https://en.wikipedia.org/wiki/Circular_law">circular law</a> (first established by Jean Ginibre in 1965 <a href="#ref-2">(2)</a>) states that when <span class="math inline">\(n\)</span> is large, with high probability, almost all the eigenvalues lie in the unit disk. Moreover, they tend to be nearly uniformly distributed there.</p>
|
||||
<p>I find this mildly fascinating that such a straightforward definition of a random matrix can exhibit such non-random properties in their spectrum.</p>
|
||||
<h2 id="simulation">Simulation</h2>
|
||||
<p>I ran a quick simulation, thanks to <a href="https://julialang.org/">Julia</a>’s great ecosystem for linear algebra and statistical distributions:</p>
|
||||
<div class="sourceCode" id="cb1"><pre class="sourceCode julia"><code class="sourceCode julia"><a class="sourceLine" id="cb1-1" title="1">using Distributions</a>
|
||||
<a class="sourceLine" id="cb1-2" title="2">using LinearAlgebra</a>
|
||||
<a class="sourceLine" id="cb1-3" title="3">using UnicodePlots</a>
|
||||
<a class="sourceLine" id="cb1-4" title="4"></a>
|
||||
<a class="sourceLine" id="cb1-5" title="5"><span class="kw">function</span> ginibre(n)</a>
|
||||
<a class="sourceLine" id="cb1-6" title="6">d = Normal(<span class="fl">0</span>, sqrt(<span class="fl">1</span>/<span class="fl">2</span>n))</a>
|
||||
<a class="sourceLine" id="cb1-7" title="7">reshape(rand(d, n^<span class="fl">2</span>), (n,n)) + im*reshape(rand(d, n^<span class="fl">2</span>), (n,n))</a>
|
||||
<a class="sourceLine" id="cb1-8" title="8"><span class="kw">end</span></a>
|
||||
<a class="sourceLine" id="cb1-9" title="9"></a>
|
||||
<a class="sourceLine" id="cb1-10" title="10">v = eigvals(ginibre(<span class="fl">2000</span>))</a>
|
||||
<a class="sourceLine" id="cb1-11" title="11"></a>
|
||||
<a class="sourceLine" id="cb1-12" title="12">scatterplot(real(v), imag(v), xlim=[-<span class="fl">1.5</span>,<span class="fl">1.5</span>], ylim=[-<span class="fl">1.5</span>,<span class="fl">1.5</span>])</a></code></pre></div>
|
||||
<p>I like using <code>UnicodePlots</code> for this kind of quick-and-dirty plots, directly in the terminal. Here is the output:</p>
|
||||
<p><img src="../images/ginibre.png" /></p>
|
||||
<h2 id="references">References</h2>
|
||||
<ol>
|
||||
<li><span id="ref-1"></span>Hall, Brian C. 2019. “Eigenvalues of Random Matrices in the General Linear Group in the Large-<span class="math inline">\(N\)</span> Limit.” <em>Notices of the American Mathematical Society</em> 66, no. 4 (Spring): 568-569. <a href="https://www.ams.org/journals/notices/201904/201904FullIssue.pdf" class="uri">https://www.ams.org/journals/notices/201904/201904FullIssue.pdf</a></li>
|
||||
<li><span id="ref-2"></span>Ginibre, Jean. “Statistical ensembles of complex, quaternion, and real matrices.” Journal of Mathematical Physics 6.3 (1965): 440-449. <a href="https://doi.org/10.1063/1.1704292" class="uri">https://doi.org/10.1063/1.1704292</a></li>
|
||||
</ol>
|
||||
</section>
|
||||
</article>
|
||||
|
||||
</main>
|
||||
|
||||
<footer>
|
||||
Site proudly generated by
|
||||
<a href="http://jaspervdj.be/hakyll">Hakyll</a>
|
||||
</footer>
|
||||
</body>
|
||||
</html>
|
BIN
images/ginibre.png
Normal file
BIN
images/ginibre.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
62
posts/ginibre-ensemble.org
Normal file
62
posts/ginibre-ensemble.org
Normal file
|
@ -0,0 +1,62 @@
|
|||
---
|
||||
title: "Random matrices from the Ginibre ensemble"
|
||||
date: 2019-03-20
|
||||
---
|
||||
|
||||
** Ginibre ensemble and its properties
|
||||
|
||||
The /Ginibre ensemble/ is a set of random matrices with the entries
|
||||
chosen independently. Each entry of a $n \times n$ matrix is a complex
|
||||
number, with both the real and imaginary part sampled from a normal
|
||||
distribution of mean zero and variance $1/2n$.
|
||||
|
||||
Random matrices distributions are very complex and are a very
|
||||
active subject of research. I stumbled on this example while
|
||||
reading an article in /Notices of the AMS/ by Brian C. Hall [[ref-1][(1)]].
|
||||
|
||||
Now what is interesting about these random matrices is the
|
||||
distribution of their $n$ eigenvalues in the complex plane.
|
||||
|
||||
The [[https://en.wikipedia.org/wiki/Circular_law][circular law]] (first established by Jean Ginibre in 1965 [[ref-2][(2)]])
|
||||
states that when $n$ is large, with high probability, almost all
|
||||
the eigenvalues lie in the unit disk. Moreover, they tend to be
|
||||
nearly uniformly distributed there.
|
||||
|
||||
I find this mildly fascinating that such a straightforward definition
|
||||
of a random matrix can exhibit such non-random properties in their
|
||||
spectrum.
|
||||
|
||||
** Simulation
|
||||
|
||||
I ran a quick simulation, thanks to [[https://julialang.org/][Julia]]'s great ecosystem for linear
|
||||
algebra and statistical distributions:
|
||||
|
||||
#+begin_src julia
|
||||
using Distributions
|
||||
using LinearAlgebra
|
||||
using UnicodePlots
|
||||
|
||||
function ginibre(n)
|
||||
d = Normal(0, sqrt(1/2n))
|
||||
reshape(rand(d, n^2), (n,n)) + im*reshape(rand(d, n^2), (n,n))
|
||||
end
|
||||
|
||||
v = eigvals(ginibre(2000))
|
||||
|
||||
scatterplot(real(v), imag(v), xlim=[-1.5,1.5], ylim=[-1.5,1.5])
|
||||
#+end_src
|
||||
|
||||
I like using =UnicodePlots= for this kind of quick-and-dirty plots,
|
||||
directly in the terminal. Here is the output:
|
||||
|
||||
[[../images/ginibre.png]]
|
||||
|
||||
** References
|
||||
|
||||
1. <<ref-1>>Hall, Brian C. 2019. "Eigenvalues of Random Matrices in
|
||||
the General Linear Group in the Large-$N$ Limit." /Notices of the
|
||||
American Mathematical Society/ 66, no. 4 (Spring):
|
||||
568-569. https://www.ams.org/journals/notices/201904/201904FullIssue.pdf
|
||||
2. <<ref-2>>Ginibre, Jean. "Statistical ensembles of complex,
|
||||
quaternion, and real matrices." Journal of Mathematical Physics 6.3
|
||||
(1965): 440-449. https://doi.org/10.1063/1.1704292
|
Loading…
Add table
Add a link
Reference in a new issue