Update header and styling

This commit is contained in:
Dimitri Lozeve 2020-04-14 12:51:55 +02:00
parent 0efca8e59d
commit 547fb99ab2
30 changed files with 57 additions and 1476 deletions

View file

@ -9,6 +9,7 @@
<title>Dimitri Lozeve - Skills in Statistics, Data Science and Machine Learning</title>
<link rel="stylesheet" href="./css/tufte.css" />
<link rel="stylesheet" href="./css/pandoc.css" />
<link rel="stylesheet" href="./css/default.css" />
<link rel="stylesheet" href="./css/syntax.css" />
<!-- KaTeX CSS styles -->
@ -25,9 +26,6 @@
<article>
<header>
<div class="logo">
<a href="./">Dimitri Lozeve</a>
</div>
<nav>
<a href="./">Home</a>
<a href="./projects.html">Projects</a>
@ -43,9 +41,6 @@
</header>
<!-- <header> -->
<!-- </header> -->
</article>
@ -103,62 +98,6 @@
<li>Reversible jump MCMC</li>
<li>Hidden Markov Models and Sequential Monte Carlo Methods</li>
</ul>
<!-- <main role="main"> -->
<!-- <h1 id="statistics">Statistics</h1>
<ul>
<li>Knowledge of Linear Models and Generalised Linear Models (including logistic regression), both in theory and in applications</li>
<li>Classical Statistical inference (maximum likelihood estimation, method of moments, minimal variance unbiased estimators) and testing (including goodness of fit)</li>
<li>Nonparametric statistics</li>
<li>Bootstrap methods, hidden Markov models</li>
<li>Knowledge of Bayesian Analysis techniques for inference and testing: Markov Chain Monte Carlo, Approximate Bayesian Computation, Reversible Jump MCMC</li>
<li>Good knowledge of R for statistical modelling and plotting</li>
</ul>
<h1 id="data-analysis">Data Analysis</h1>
<ul>
<li>Experience with large datasets, for classification and regression</li>
<li>Descriptive statistics, plotting (with dimensionality reduction)</li>
<li>Data cleaning and formatting</li>
<li>Experience with unstructured data coming directly from embedded sensors to a microcontroller</li>
<li>Experience with large graph and network data</li>
<li>Experience with live data from APIs</li>
<li>Data analysis with Pandas, xarray (Python) and the tidyverse (R)</li>
<li>Basic knowledge of SQL</li>
</ul>
<h1 id="graph-and-network-analysis">Graph and Network Analysis</h1>
<ul>
<li>Research project on community detection and graph clustering (theory and implementation)</li>
<li>Research project on Topological Data Analysis for time-dependent networks</li>
<li>Random graph models</li>
<li>Estimation in networks (Steins method for Normal and Poisson estimation)</li>
<li>Network Analysis with NetworkX, graph-tool (Python) and igraph (R and Python)</li>
</ul>
<h1 id="time-series-analysis">Time Series Analysis</h1>
<ul>
<li>experience in analysing inertial sensors data (accelerometer, gyroscope, magnetometer), both in real-time and in post-processing</li>
<li>use of statistical method for step detection, gait detection, and trajectory reconstruction</li>
<li>Kalman filtering, Fourier and wavelet analysis</li>
<li>Machine Learning methods applied to time series (decision trees, SVMs and Recurrent Neural Networks in particular)</li>
<li>Experience with signal processing functions in Numpy and Scipy (Python)</li>
</ul>
<h1 id="machine-learning">Machine Learning</h1>
<ul>
<li>Experience in Dimensionality Reduction (PCA, MDS, Kernel PCA, Isomap, spectral clustering)</li>
<li>Experience with the most common methods and techniques</li>
<li>Random forests, SVMs, Neural Networks (including CNNs and RNNs), both theoretical knowledge and practical experience</li>
<li>Bagging and boosting estimators</li>
<li>Cross-validation</li>
<li>Kernel methods, reproducing kernel Hilbert spaces, collaborative filtering, variational Bayes, Gaussian processes</li>
<li>Machine Learning libraries: Scikit-Learn, PyTorch, TensorFlow, Keras</li>
</ul>
<h1 id="simulation">Simulation</h1>
<ul>
<li>Inversion, Transformation, Rejection, and Importance sampling</li>
<li>Gibbs sampling</li>
<li>Metropolis-Hastings</li>
<li>Reversible jump MCMC</li>
<li>Hidden Markov Models and Sequential Monte Carlo Methods</li>
</ul> -->
<!-- </main> -->
<footer>
Site proudly generated by