diff --git a/posts/operations-research-references.org b/posts/operations-research-references.org index ebe9320..37ec1fe 100644 --- a/posts/operations-research-references.org +++ b/posts/operations-research-references.org @@ -68,7 +68,7 @@ particular, it is one of the best presentations of dynamic programming that I have ever read. The explanation of the simplex algorithm is also excellent.) -[fn:wentzel] {-} +[fn:wentzel] {-}   #+ATTR_HTML: :width 200px [[file:/images/or_references/wentzel.jpg]] @@ -102,7 +102,7 @@ great resource to build a "mental map" of the field, avoiding getting lost in the jungle of linear, stochastic, mixed integer, quadratic, and other network problems. -[fn:williams] {-} +[fn:williams] {-}   #+ATTR_HTML: :width 200px [[file:/images/or_references/williams.jpg]] @@ -153,7 +153,7 @@ the list (because it is very recent) but is also excellent, with examples in Julia covering nearly every kind of optimization algorithms. -[fn:kochenderfer] {-} +[fn:kochenderfer] {-}   #+ATTR_HTML: :width 200px [[file:/images/or_references/kochenderfer.jpg]] @@ -212,7 +212,7 @@ packages. (Even if you don't know Julia, this is a great and easy way to start!) If you'd rather use Python, you can use Google's [[https://developers.google.com/optimization/introduction/python][OR-Tools]] or [[https://github.com/coin-or/pulp][PuLP]] for linear programming. -[fn:jump] {-} +[fn:jump] {-}   #+ATTR_HTML: :width 250px :style background-color: #cccccc; [[file:/images/or_references/jump.svg]]