GardenOptim/src/loaddata.jl

83 lines
2.5 KiB
Julia

using Logging
using Unicode
using DataFrames
using CSV
using JSON
function loadplants()::DataFrame
plants = CSV.read("data/plants.csv")
@info "loaded $(size(plants, 1)) plants"
plants.name = Symbol.(plants.name)
plants
end
function loadgarden(plants::Vector{Symbol})::Tuple{Matrix{Int}, Matrix{Bool}}
garden = CSV.read("data/garden.csv")
garden = coalesce.(garden, "")
mask = convert(Matrix, garden .== "empty")
garden = Unicode.normalize.(garden, casefold=true, stripmark=true)
garden = indexin(convert(Matrix, garden), String.(plants))
garden = replace(garden, nothing=>0)
@assert size(garden) == size(mask)
@info "loaded garden of size $(size(garden))"
garden, mask
end
function loadclassification()::Classification
clf = JSON.parsefile("data/classification.json")
clf = Classification(clf)
@debug "loaded classification of type $(clf.type)"
clf
end
function loadcostsdf()::DataFrame
df = CSV.read("data/associations.csv", copycols=true)
colnames = String.(names(df))
colnames = Symbol.(Unicode.normalize.(colnames, casefold=true, stripmark=true))
rename!(df, colnames)
df.name = colnames[2:end]
# df = coalesce.(df, 0.0)
@info "loaded cost matrix for $(size(df, 1)) plants"
df
end
function computecost(plant1::Symbol, plant2::Symbol, costs_df::DataFrame, classification::Classification)::Float64
@debug "computecost($plant1, $plant2)"
if plant1 in names(costs_df) && plant2 in names(costs_df)
cost = costs_df[costs_df.name .== plant1, plant2][1]
else
cost = missing
end
if !ismissing(cost)
return cost
end
parent1 = getfirstparent(plant1, classification)
parent2 = getfirstparent(plant2, classification)
if isnothing(parent1) || isnothing(parent2)
return 0.0
end
@debug "computecost($(parent1.name), $(parent2.name))"
if parent1.name in names(costs_df) && parent2.name in names(costs_df)
cost = costs_df[costs_df.name .== parent1.name, parent2.name][1]
end
if !ismissing(cost)
return cost
end
return 0.0
end
function costsmatrix(plants::Vector{Symbol}, costs_df::DataFrame, classification::Classification)::Matrix{Float64}
[computecost(plant1, plant2, costs_df, classification) for plant1 in plants, plant2 in plants]
end
function loadcosts()
plants = loadplants()
clf = loadclassification()
costs_df = loadcostsdf()
costs = costsmatrix(plants.name, costs_df, clf)
end